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Abstract
The brain transforms nociceptive input into a complex pain experience comprised of sensory, affective, motivational, and
cognitive components. However, it is still unclear how pain arises from nociceptive input and which brain networks
coordinate to generate pain experiences. We introduce a new high-dimensional mediation analysis technique to estimate
distributed, network-level patterns that formally mediate the relationship between stimulus intensity and pain. We applied
the model to a large-scale analysis of functional magnetic resonance imaging data (N = 284), focusing on brain mediators of
the relationship between noxious stimulus intensity and trial-to-trial variation in pain reports. We identify mediators in
both traditional nociceptive pathways and in prefrontal, midbrain, striatal, and default-mode regions unrelated to
nociception in standard analyses. The whole-brain mediators are specific for pain versus aversive sounds and are organized
into five functional networks. Brain mediators predicted pain ratings better than previous brain measures, including the
neurologic pain signature (Wager et al. 2013). Our results provide a broader view of the networks underlying pain
experience, as well as novel brain targets for interventions.
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Introduction
The brain is central to the generation of pain; it transforms
sensory input into a complex set of pain-related responses,
including subjective experience, autonomic responses, avoid-
ance behavior, and activation of linked memories and concepts.
However, the boundaries of the brain systems that mediate this
series of transformations have been inconsistent across studies.
Traditionally, pain processing has been associated with a dis-
crete set of brain regions targeted by spinal nociceptive affer-
ents, including primary (S1) and secondary (S2) somatosensory,
and anterior midcingulate cortices (aMCC), medial and lateral
thalamus, and posterior and midinsular cortices (Apkarian et al.
2005; Dum et al. 2009; Jensen et al. 2016). These have been
referred to as the “pain matrix” and often treated as a unitary
system, though this concept has been largely abandoned as its
specificity to pain has been called into question. Other studies
have found that additional regions are also involved in encoding
the intensity of noxious stimuli and/or correlate with pain expe-
rience under some circumstances (Bingel et al. 2002; Büchel et al.
2002; Becerra et al. 2013), making the boundaries of the “pain
matrix” elusive and context-dependent. And, though this set of
regions has been grouped into subsystems (Craig et al. 2000)—
for example, lateral and medial subsystems more closely related
to sensory–discriminative and affective–motivational aspects of
pain, respectively (Villemure et al. 2003)—empirical studies have
shown that the division between sensory encoding and pain
affect is not straightforward (Baliki et al. 2009; Atlas et al. 2010,
2014).

One source of complexity lies in the fact that “pain matrix”
or “pain-processing” regions have been defined in multiple
ways. Some studies identify regions based on stimulus intensity
encoding, the tendency for a region to be activated by more
versus less intense noxious stimuli (Peyron et al. 2002; Wager
et al. 2004). Others identify regions based on correlations with
pain reports (Coghill et al. 1999; Lindquist et al. 2017). Both
are relevant: A region involved in pain generation should both
encode stimulus intensity and correlate with reported subjective
experience, even when intensity is matched. Accordingly, one
step forward lies in characterizing formal brain “mediators” of
the relationship between stimulus intensity and pain report
(Atlas et al. 2010, 2014). Mediation is a statistical test that links
experimentally manipulated variables, brain measures, and
behavioral outcome variables in a single path model. It requires
both an effect of an initial (often experimentally manipulated)
variable and association with an outcome (e.g., pain) controlling
for stimulus intensity. Applied to pain, it can be used to identify
brain regions that both encode experimental manipulations in
noxious stimulus intensity and correlate with pain experience
controlling for intensity, with sufficient effect sizes in both tests
to pass the more stringent test of mediation.

Previous studies have identified brain mediators of pain
(Atlas et al. 2010, 2014), testing voxels one at a time. However,
this kind of univariate approach can miss brain regions whose
contributions to pain perception are conditional on other
regions. More broadly, it is increasingly clear that much of
the functional information encoded in the brain is encoded
in distributed patterns across neural ensembles and systems
(Pouget et al. 2000; Haxby et al. 2014), which requires brain
information to be treated in a multivariate fashion (Kriegeskorte
2011; Woo et al. 2017). Mediation models with “multivariate”
brain mediators are required to characterize these patterns, but
have not been available until now. Here, we provide the first

analysis of multivariate brain mediators of pain, using a novel
statistical method called “principal directions of mediation”
(PDM) (Chén et al. 2017). PDM decomposes activity across
the brain into multiple networks that independently mediate
stimulation effects on outcomes (Fig. 1A,B). This can help
identify which brain systems mediate stimulus intensity effects
on pain, taking the distributed nature of information encoding
in the brain into account.

Another source of complexity lies in the fact that most pain
studies have been necessarily limited in sample size (typical
N < 50). Results from small studies are increasingly recognized
as variable and prone to high levels of both false positive and
false negative results (Button et al. 2013). We address this issue
by analyzing within-person, single-trial pain data aggregated
across eight individual studies (N = 284). In addition, the test
study not only included heat pain stimuli but also two distinct
types of sounds: physically aversive sounds (a “knife on plate”)
and emotionally aversive sounds (gunshots, screams, etc.) This
provides one of the first tests of specificity of multivariate pain-
related patterns against sounds (cf. Horing et al. 2019; Liang
et al. 2019) and the first test of functional specificity of brain
mediators of pain.

Materials and Methods
Participants

The analysis included data from a total of 284 healthy par-
ticipants from eight independent studies, with sample sizes
ranging from N = 17 to N = 75 per study. Descriptive statistics
on the age, sex, and other features of the subjects in each
individual study are provided in Supplementary Tables S1–S3.
Further details on studies 1–7, which were used to estimate the
PDMs, are provided in Lindquist et al. (2017). Participants were
recruited from New York City and Boulder/Denver Metro Areas.
The institutional review board of Columbia University and the
University of Colorado Boulder approved all the studies, and
all participants provided written informed consent. Preliminary
eligibility of participants was determined through an online
questionnaire, a pain safety screening form, and a functional
magnetic resonance imaging (fMRI) safety screening form.

We applied several exclusion criteria for analysis purposes.
Participants with psychiatric, physiological or pain disorders,
neurological conditions, and MRI contraindications were
excluded prior to enrollment. In addition, participants were
required to have at least 30 trials with low variance inflation
factors (see Supplementary Materials and Methods), nonmissing
rating, and stimulation intensity data. Based on these criteria,
18 participants from study 8 were excluded, resulting in a
total of 209 participants for the primary PDM analysis and 75
participants for the validation sample.

Procedures

Overview
Participants in all studies underwent fMRI scanning while being
exposed to varying levels of heat pain within-person and rating
the perceived pain intensity (see Supplementary Tables S1–S3).
For each participant, we recorded the temperature applied and
the pain rating for each trial and estimated single-trial maps of
brain activity. These three variables were used in the primary
mediation analysis with temperature as the initial variable,
brain activity as the mediator, and pain rating as the outcome
variable (Fig. 1).
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Figure 1. Mediation analysis. (A) Schematic of the mediation analysis framework. Brain activity is an intermediate, mediating variable (M) between a manipulated

noxious stimulus intensity (X) and perceived pain (Y). In the high-dimensional PDM approach, a linear combination of all brain voxels acts as mediators. Multiple,
orthogonal mediators can be estimated. The weight vectors wk (or PDMs) represent the contribution of individual voxels to the kth mediation pathway. Voxel weights
(wk) are fit so that the indirect, mediated effect is maximized. (B) Mediation path coefficients for all 30 PDMs are shown with signs of path a coefficients set to be
positive. Path a indicates the temperature-to-brain (PDM) relationship, path b the PDM to pain rating relationship, and path ab the indirect, mediated effect. Positive

coefficients indicate that voxels with positive weights in a given PDM are positively related with temperature and/or rating. The first 10 PDMs explain more 99% of
the total indirect effect. We focus on these PDMs in the following analyses (shaded area in right panel). (C) PDMs are estimated on the training data comprising a total
of 209 participants from 7 pain studies. PDM validation is done on an independent eighth data set with 75 participants. (D) Individual PDMs can be combined into a
single, cPDM by weighting and summing the individual, orthogonal PDMs. cPDM voxel weights are shown on the brain rendering and in key regions in the right panel.

Using the high-dimensional mediation analysis model, we
first estimated 30 whole-brain mediation patterns (PDMs). Each
PDM specifies a linear combination of voxels across the brain
maximizing the mediated effect from temperature to pain rat-
ing, while being orthogonal to other PDMs (Fig. 1A). Each PDM (or
wp) thus represents a formal, whole-brain mediator for pain. The
voxel weights of each PDM inform about the contribution of indi-
vidual brain regions to the generation of a painful experience
following noxious stimulation.

Furthermore, as the PDM model is linear, independent PDMs
can readily be fused into a single, combined PDM (cPDM) that can
be prospectively applied to new data sets as a predictive model.
We fused the individual brain mediator maps into a cPDM by
estimating the weighted combination of individual PDMs that
best predicted pain in the training sample (see section PDM and
Fig. 1D). Prediction performance can then be evaluated against
independent data test.

Thermal and Aversive Sound Stimulation
The number of noxious stimulation trials, stimulation sites,
intertrial intervals, rating scales, and stimulus intensities and

durations varied across studies, but were comparable; these
variables are summarized in Supplementary Tables S2 and S3.
Each study also comprised a specific psychological manipula-
tion (except study 8), such as placebo treatment, which has been
reported elsewhere (see Supplementary Table S1).

In studies 1–6, thermal stimulation was delivered to multiple
skin sites using a TSA-II Neurosensory Analyzer (Medoc Ltd,
Chapel Hill, NC) with a 16-mm Peltier thermode endplate. A
pathway system (Medoc Ltd, Chapel Hill, NC) was used in studies
7 and 8. Participants rated the perceived magnitude of warmth
or pain during or after each trial. Most studies applied heat to
the left volar forearm (see Supplement Methods and Lindquist
et al. [2017] for details).

Study 8, which was used for validation purposes (see below),
also presented aversive sounds to participants. Trials with aver-
sive sounds were used to test the specificity of the pain PDMs.
Sounds included a physically aversive recording of nails on a
chalkboard and a set of emotionally aversive sounds (attacks,
screaming, and crying) from the International Affective Digital
Sounds database (Bradley and Lang 2007). Aside from these
sound trials, we focus on brain mediation of pain across all
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trials in the present paper, irrespective of the study-specific
psychological and physical manipulations that influenced pain.

fMRI Data Processing

Preprocessing and Subject-Level Models
We chose to retain the original preprocessing used in each pub-
lished paper for two reasons: (1) to establish, and test, robustness
across minor variations in processing pipelines and (2) because
study-specific analysis choices are appropriate in some cases,
depending on the distribution of the data and study design (for
details, see Supplementary Methods and Lindquist et al. [2017]).
Briefly, structural, T1-weighted images were coregistered to the
functional mean image and then normalized to MNI space using
SPM. For each study, a single trial, or single epoch model, was
estimated (Koyama et al. 2003; Rissman et al. 2010; Mumford
et al. 2012). The single-trial brain activation estimates served as
the basis for the subsequent analysis.

PDM Validation
The high-dimensional brain mediators (PDMs) were estimated
on the training data comprised of studies 1–7 (Lindquist et al.
2017). Even though this data set is large (N = 209) and diverse,
the possibility of overfitting to the training data might reduce
the generalizability of the PDMs. To test for the generalizability
of the PDMs, we validated the PDMs on independent data test
(study 8, N = 75). Computing the inner product of each PDM with
each single-trial beta image from study 8 resulted in 10 potential
mediator variables. Each of these potential mediators was then
subjected to a multilevel mediation analysis (Wager et al. 2009)
with P values determined by a bootstrap procedure with 5000
iterations each. If the PDMs generalize to the new data set, paths
ak, bk, and the indirect effect abk should be significant for all
k = 1, . . . , 10 PDMs.

We also tested whether the PDMs specifically mediate the
relationship between temperature and pain intensity. To this
end, we also tested the original PDMs on the aversive sound
trials from study 8. If the PDMs reflect specific patterns of brain
activity involved in pain processing, they should not mediate
the relationship between sound stimulation level and intensity
ratings. We thus expect no significant indirect effect for the
sound trials.

A further test to validate the stability of PDM estimation was
conducted by switching training and data test. That is, pain
PDMs were estimated on study 8 and tested on the original
training data from studies 1 to 7 as described above.

Dimension Reduction
The training data set consisted of a total of 13 372 single-trial
beta images (i.e., activation estimate images), each consisting of
229 519 voxels, from 209 participants. To reduce the dimension-
ality of the data to a computationally tractable size, a generalized
version of population value decomposition (PVD) (Caffo et al.
2010; Crainiceanu et al. 2011; Chén et al. 2017) was applied
(using PVD.m, included in the M3 mediation toolbox available at
https://github.com/canlab/MediationToolbox). This procedure is
similar to singular value decomposition (SVD) but decomposes
the data matrix into both participant-specific and population-
specific components. We chose a dimensionality of P = 30
based on a tradeoff between variance explained and the number
of trials available for each participant. The beta images were
z-scored within each participant before PVD application. The
reduced data matrix used for PDM estimation consisted of a
matrix with dimensions 13 372 × 30.

Principal Directions of Mediation Model

Let Xi be the temperature, Yi the reported pain, and Mi =
(m(1)

i , m(2)
i , . . . m(p)

i ) the brain activity over p voxels (i.e., the beta
maps) measured between the application of the thermal stimuli
and the pain report for observation (i.e., trial) i = 1, . . . n. We
are interested in determining how brain activation mediates
the relationship between temperature and pain report. We can
estimate the parameters of this model using the following set of
equations:

m(j)
i = α0,j + αjXi + εij for j = 1, . . . p

Yi = β0 + γ ′Xi + β1m(1)
i + β2m(2)

i + · · · + βpm(p)
i + ηi (1)

Once the parameters have been estimated, we can express
the total effect γ as the sum of the direct and indirect effects as
follows:

γ = γ ′ +
p∑

j=1

αjβj (2)

If p is relatively small, the series of regressions described in
equation (1) can be used to estimate the pertinent mediation
effects. However, in our setting, there are too many mediators to
allow reasonable interpretation (unless the model coefficients
are highly structured), and there are many more mediators than
subjects, precluding estimation using standard procedures. To
overcome these problems, we introduce a transformation of the
space of mediators, determined by finding linear combinations
of the original mediators that (1) are orthogonal and (2) are
chosen to maximize the indirect effect. The first constraint
allows us to fit a separate linear model for each transformed
variable. The second constraint allows us to limit our analysis to
only those directions that contain the most information about
the indirect effect. Here, we improve and extend the approach
proposed by Chén et al. (2017) by choosing a different cost
function, computing a cPDM, and analyzing an almost 10-times
larger data set.

This new model, called the “PDM,” linearly combines activity
in different voxels into a smaller number of orthogonal com-
ponents, with components ranked based upon the proportion
of the indirect effect that each accounts for. Ideally, the com-
ponents form a small number of uncorrelated mediators that
represent interpretable networks of voxels.

To illustrate, let m̃(k)
i = ∑p

j=1w(j)
k m(j)

i for k = 1, . . . q be a set

of linear transformations of the mediators with wk = (w(1)
k ,

w(2)
k , . . . w(p)

k ). Placing these new variables into our mediation
model, we obtain:

m̃(k)
j = a0,k + akXj + εjk for k = 1, . . . q

Yi = b0,k + c′Xi + bkm̃(k)
i + ηik (3)

Now, we can decompose the total effect into direct and
indirect effects as follows:

c = c′ +
q∑

k=1

akbk (4)

The difference between this model and the standard media-
tion model described in equation (1) is that the wk is unknown.
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Figure 2. PDM. Voxel maps for PDMs with individually significant voxels at FDR q < 0.05. Tan backgrounds indicate PDMs with positive paths a and b. Blue backgrounds
indicate PDMs with positive path a and negative path b. Brain activity increases in voxels with positive weights (warm colors) with higher temperatures. Higher brain

activity in these voxels is related to higher pain ratings in PDMs with positive path b (tan panels) and negatively with negative path b (blue panels). No voxels are
individually significant in PDM 8. The bottom panel shows the cPDM, a weighted linear combination of the above 10 PDMs. The top 5% of voxels based on voxel
weights are shown since almost all voxels survived the significance testing. All brain figures are displayed in neurological convention (left is left) and thresholded
at FDR q < 0.05. MCC = midcingulate cortex, SMA = supplementary motor area, mPFC = medial prefrontal cortex, PAG = periaqueductal gray, midIns = mid-insula,

dpIns = dorsal posterior insula, S2 = secondary somatosensory cortex, S1 = primary somatosensory cortex, M1 = primary motor cortex, mOFC = medial orbitofrontal
cortex, RSC = retrosplenial cortex, SFG = superior frontal gyrus, vIns = ventral insula, dmPFC = dorsomedial prefrontal cortex, V1 = primary visual cortex, V2 = secondary
visual cortex, vStriatum = ventral striatum, NAc = nucleus accumbens, mThal = medial thalamus, aIns = anterior insula, and SPL = superior parietal lobule.

In our approach w1is chosen so that it maximizes the amount of
the indirect effect that is explained (i.e., a1b1 is maximized). We
refer to w1as the first “principal direction of mediation” (PDM).
Note the first PDM corresponds to voxel-specific weights that
can be mapped onto the brain and thus provides interpretable
maps of brain networks in the same manner as independent
component analysis (ICA) and principal component analysis
(PCA). Subsequent directions wk, k = 1, . . . q can be found that
maximize the remaining indirect effect conditional on being
orthogonal to previous PDMs. As the transformed mediators
are ranked based upon the proportion of the indirect effect
explained, one could potentially limit the number of PDMs com-
puted to achieve dimension reduction. Hence, our approach is
philosophically similar to PCA, but addresses a fundamentally
different problem.

The individual, orthogonal PDMs can be fused into a cPDM by
computing the following weighted sum:

wcombined =
q∑

k=1

dkwk (5)

The scalar weights dk are estimated from the training sample
using a linear model with the individual PDMs as regressors and
reported pain as the response.

According to the model formulation, the signs of the PDMs

are not identifiable, as any change in the sign of m̃(k)
i can be offset

by a change in sign of both ak and bk. We fix the signs of ak to be
positive for easier interpretation, that is, positive voxel weights
indicate higher brain activity for higher stimulus intensities.
This is a similar constraint to the ICA approach often used in
neuroimaging to detect networks. The orthogonality constraint
does not reduce the total amount of variance explained by all
PDMs.

The problem of finding the kth PDM involves finding the
vector wk that maximizes akbk based on the constraint that
wT

k wk = 1 and wT
k wj = 0 for all j = 1, . . . , k − 1. This problem

can be solved using a nonlinear programming solver such as
the interior-point algorithm. Inference is performed using a
bootstrap procedure with 5000 iterations, as described in Chén
et al. (2017). PDM maps are thresholded at a false discovery
rate (FDR) of q < 0.05. The cPDM map in Figure 2 displays the
top 5% of voxels based on their weight parameters, yielding a
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more conservative display than FDR. We present results of 10
PDMs accounting for more than 99% of the total indirect effect.
A software implementation is available at (https://github.com/
canlab/MediationToolbox) (multivariateMediation.m).

In summary, we obtain scalar coefficients for paths ak, bk,
and c′k, as well as the indirect effect akbk for each PDM as in a
standard, univariate mediation analysis. In addition, we obtain
the voxel weight vector wk that maximizes the indirect effect
akbk.

Cluster Analysis

The voxel weight maps for the mutually independent 10 PDMs
span a high-dimensional space of brain mediators of pain per-
ception. In order to reduce the dimensionality of that space and
identify brain regions with similar activation profiles, we con-
ducted a two-stage cluster analysis. The procedure is described
in detail in Kober et al. (2008) and Atlas et al. (2014). Briefly, for
significant voxels from the 10 PDMs, we extracted single-trial
activity estimates, resulting in a 13 372 trials × 25 469 voxels
matrix. We then used SVD to reduce the dimensionality of the
voxel space. We kept 364 components that explained 95% of
the variance. Next, we clustered voxels into 250 spatial parcels
using hierarchical clustering. We then computed average single-
trial activity within each parcel and used nonmetric multidi-
mensional scaling (NMDS) and hierarchical clustering to further
reduce the dimensionality of the data. Inspection of the Shepard
plot suggested a NMDS dimensionality of 15 with stress indices
below 0.05. Stress indices (S) are computed according to Shepard
(1980) with

S =

√√√√√
∑

h,i

(
dhi − d̂hi

)2

∑
h,i d2

hi

(6)

Here, dhi is the pairwise empirical dissimilarity and d̂hi is
the distance implied by the current solution between two brain
regions h andi. Hierarchical clustering was then used to clus-
ter the 250 parcels into 33 regions that coactivate across tri-
als. These regions were not necessarily contiguous, and some
spanned multiple anatomical regions, for example, covering
right midinsula and dorsal insula plus operculum. Since we used
voxel-wise FDR correction on the 10 PDMs, we expect some false
positive values. Accordingly, some of the functional regions were
located in the cerebrospinal fluid or outside the gray matter.
We thus removed seven smaller functional clusters that were
considered highly unlikely to be true gray matter region. We
then averaged brain activity within the remaining 26 functional
regions or nodes. NMDS was used to reduce the dimension-
ality again to 10 dimensions based on stress values. Applying
hierarchical clustering again on the regions identified in the
previous step identified large-scale functional brain networks.
Permutation tests indicated that five networks provided the
best clustering solution in terms of improvement over solutions
on permuted data. Similarity of those five networks with the
binarized PDM maps was assessed by Dice coefficients, which
represents the true positive rate of the intersection between two
maps.

Local Pattern Expression Analyses

To summarize the cPDM pattern weights as a function of known
regions or networks, we calculated the pattern energy within
three sets of predefined regions. The first was a set of regions

identified as contributing to nociceptive pain pathways based on
prior work. We identified regions in the cortex using the atlas of
Glasser et al. (2016), the thalamus using the atlas of Morel et al.
(1997), and key brainstem regions based on previous papers:
for parabrachial nucleus (PBN), Fairhurst et al. (2007), and for
rostral ventral medulla (RVM), Brooks et al. (2017). For the PAG,
we (T.D.W.) hand-drew a region on the 7T high-resolution group
T1 of Keuken et al. (2014) and segmented out the cerebral aque-
duct to exclude it. Nociceptive thalamic zones were included as
defined below.

The second set of regions was based on Morel et al. (1997).
We grouped the 80 or so thalamic/epithalamic regions into 17
functional zones likely to be detectable using fMRI (see Fig. 3 for
a complete list). Nociceptive thalamic zones included the ven-
tral–posterior–lateral (VPL) and ventral–posterior–medial (VPM)
zones, the intralaminar group, and the mediodorsal “association
nucleus” (MD).

The third set of regions was a set of cortical networks
defined based on resting-state connectivity, which we used
to map cPDM weights onto established large-scale networks.
We extracted loadings from 16 unique networks described in
Schaefer et al. (2018) and manually separated them into left-
and right-hemisphere components to examine lateralization
(see Fig. 4 for a complete list).

To summarize pattern weights in each local region or net-
work, we calculated a measure of “pattern energy,” related to the
absolute magnitude of predictive weights:

Er =
√

wTw
V + 1

(7)

Er is the root-mean-square of weights in region (or network
mask) r per cubic cm of brain tissue. w denotes the vector of
weights for in-region voxels and V is the volume of the region in
cm3. As the variance of Er varies inversely with region volume,
the constant 1 is added to regularize the volume and thus avoid
noise-driven, large-magnitude estimates for small regions. The
area of the wedges in Figures 3 and 4 is proportional to Er.

We also defined a measure of “pattern valence” in prede-
fined regions, which is the degree to which voxel weights are
uniformly positive or negative. Pattern valence is defined as the
cosine similarity of the pattern weights with the unit vector
across in-region voxels. It is bounded at 1 and − 1, where 1 indi-
cates uniform positive weights across voxels and − 1 indicates
uniform negative weights. The color of the wedges in Figures 3
and 4 are proportional to the pattern valence; red colors indi-
cate homogenous positive weights, blue homogenous negative
weights, and purple mixed, variable weights across in-region
voxels.

Comparison with Other Multivariate Models

To compare the PDM approach to other multivariate models
of pain processing, we compared PDM1 and cPDM to the
neurologic pain signature (NPS; Wager et al. 2013), to the
stimulus intensity-independent pain signature 1 (SIIPS1; Woo
et al. 2017), and the combination of NPS and SIIPS1. Furthermore,
we compared the PDM approach against pain prediction by the
Neurosynth reverse inference map for the term “pain” (https://
neurosynth.org/analyses/terms/pain/). For each map, we cor-
related the predicted pain outcomes with the actual pain
ratings on a single-trial level. In addition, we correlated the
predictive brain maps with each other to evaluate similarities
and differences in spatial pattern weights. Prediction–outcome
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Figure 3. cPDM weights in nociceptive pathways. (A) Pattern weights in 24 cerebral targets of nociceptive pathways. The results show strong contributions from
nociceptive subregions in the thalamus and brainstem, including both ventrolateral (sensory) and medial (affective) thalamic zones, and the parabrachial complex

(PBN). These are critical pathways in animal models but have been seldom identified in human pain studies. (B) Pattern weights across thalamic regions as defined
by the Morel atlas. Predictive weights are distributed unevenly across the thalamus, and positive weights (red) are concentrated in sensory (VPM/VPL) and medial
nociceptive targets (MD and intralaminar) and anterior nuclei (VA, VM, VL). They are also positive in the habenula (Hb). By contrast, they are absent in visual/auditory
regions (MGN, LGN, pulvinar). This demonstrates selectivity for expected pain-related nuclei.

correlations were compared using paired t-tests of Fisher-z–
transformed correlation values.

Univariate Mediation Analysis

In univariate mediation analyses, a mediation model is esti-
mated separately for every brain voxel (Wager et al. 2008; Atlas
et al. 2010, 2014). Univariate mediation analysis produces three
sets of brain maps—one for each path—in contrast to the PDM
approach, which estimates only one set of paths for each PDM
map. Previous studies also used smaller sample sizes available
than the present study and had thus less statistical power than
the present study. We ran a univariate mediation analyses on
the training data set to directly compare the univariate results to
the PDM approach. Univariate multilevel mediation analysis was
conducted using the Multilevel Mediation and Moderation (M3)
Toolbox for MATLAB (https://github.com/canlab/MediationToo
lbox). Voxel-wise significance was determined using a bootstrap
procedure with 5000 iterations. An FDR of q < 0.05 was used to
control for multiple comparisons.

Results
Principal Directions of Mediation

For each individual PDM, we estimated path a (stimulus inten-
sity to brain), path b (brain to pain report), and mediation (a ∗ b)
effects as in a standard mediation model (Figs 1 and 2). A positive
path a indicates that higher temperatures lead to more activity

in voxels with positive PDM weights (yellow in brain figures) and
less activity in voxels with negative PDM weights (blue in brain
figures). A positive path b indicates that voxels with positive
weights contribute positively to the pain rating after controlling
for temperature. This pattern would be expected for regions that
receive spinothalamic input, for example, the dorsal posterior
insula or S2 (Willis and Westlund 1997; Dum et al. 2009) and
possibly other mediating regions as well.

The absolute coefficient values for the indirect ab path assess
how much of the effect of the manipulated temperature on pain
ratings is explained by the brain mediator, that is, individual
PDM pattern. Here, the first 10 PDMs accounted for 99.1% of the
total mediation effect (Figs 1B and S1). We thus focus on the
first 10 PDMs in all subsequent analyses with minimal loss of
information. In order to analyze the contribution of individual
brain regions to the mediation of pain, the signs of both paths a
and b and the sign of the voxel weights have to be considered:
Voxel weights are multiplied by the respective path coefficients
to determine a region’s relationship to stimulation intensity and
pain rating.

When considering the signs of the voxels weights, four differ-
ent kinds of relationship are possible: (1) positive to temperature,
positive to pain; (2) negative to temperature, negative to pain;
(3) positive to temperature, negative to pain; and (4) negative
to temperature, positive to pain. Here, type (1) is the stan-
dard, positive mediator case expected from nociceptive coding
regions and type (2) represents a negative mediator, in which
greater deactivation to the stimulus mediates increased pain
(MacKinnon et al. 2000). Types (3) and (4) are suppressor effects
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Figure 4. Cortical network profile for the cPDM. Pattern energy in resting-state cortical networks are distributed unevenly with strong, positive weights (red wedges)

present in somatomotor B, ventral attention A, and control C networks. The first two match broadly on known nociceptive processing areas, while parts of control C
(e.g., precuneus) are less known for pain processing.

(MacKinnon et al. 2000); for example, for type (3), brain activity
increases with stimulus intensity that suppress pain and may
thus be involved in stimulus-engaged regulatory processes and
other negative feedback loops. Note that the values of path
coefficients shown in Figure 1 depend on the scaling of the
predictor (X), mediator (M), and outcome (Y). The fact that path
a coefficients are an order of magnitude larger than path b is
solely related to differences in scaling and does not relate to
their relevance. Please note that mixing of signals from distinct
neural populations within fMRI voxels is common in similar
types of analysis such as ICA and manifests itself in different
weight patterns across PDMs, for example, for left S1.

PDM 1 has both positive path a and b coefficients. Brain
regions with positive weights (representing positive mediators,
type 1 with positive paths a and b) are shown in warm colors
in Figure 2. These include brain regions commonly associated
with pain processing, such as the dorsal posterior and midin-
sula, S1, S2, MCC, and the PAG (Fig. 2). Significant voxels in
MCC stretch into the supplementary motor area (SMA), dor-
sal of the cingulate sulcus. In addition, PDM 1 contains nega-
tive, type (2), mediators, including the medial prefrontal cortex
(mPFC) and left S1/M1. The negative weights indicate that these
regions show less activation with increasing temperatures and
lower regional activation is related to higher pain ratings. Such

relationships are to be expected for brain regions whose func-
tion is inhibited by nociceptive input or that are deactivated with
increased pain-related processing.

Brain regions positively mediating the relationship between
temperature and pain rating (type 1) in other PDMs are S1,
M1, superior frontal gyrus (SFG), frontotemporal operculum,
temporal poles, temporal operculum, ventral insula, pons, and
the cerebellum (Fig. 2; yellow regions in, e.g., PDMs 1, 2, 4, and
6 in particular). These positive mediators include regions, like
the temporal regions, that are traditionally not considered to
be pain-processing regions. Brain regions acting as negative
mediators (type 2) in other PDMs include medial orbitofrontal
cortex (mOFC), dorsomedial prefrontal cortex (dmPFC), superior
parietal lobule (SPL), retrosplenial cortex (RSC), precuneus, and
cuneus (blue regions in PDMs 1, 2, 4, and 6). Those regions
belong to systems that are deactivated consequent to pain or
nociception (e.g., systems mediating competing functions).

A more complex function is indicated by positive path a
coefficients, but negative path b coefficients (types 3 and 4,
PDMs 3, 5, 7, and 9). In type (3), regions with positive voxel
weights show a positive relationship with temperature, that is,
higher temperatures lead to more activity. However, the negative
path b indicates that these regions are negatively related to
pain ratings controlling for temperature, that is, more activity
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is related to lower pain ratings. Regions with such a profile fit a
pain-inhibitory role, as they are activated by painful stimulation
but serve to dampen pain—a negative feedback loop. Parts of the
mOFC/vmPFC, the cerebellum, precuneus, S1, temporal–parietal
junction, and the left dlPFC fit this pain-inhibitory profile (see
yellow areas in PDMs 3, 5, and 7 in particular).

A final set of regions shows a negative relationship with tem-
perature (positive path a, but negative weights; blue in PDMs 3, 5,
and 7) and a positive relationship with pain ratings, controlling
for temperature (negative voxel weights and negative path b
resulting in a net positive relationship; type 4). Such regions
show stimulus intensity-dependent deactivation, with stronger
deactivation mediating decreased pain, consistent with regula-
tory negative feedback mechanisms. Regions with this profile
include parts of the mOFC, the parahippocampal gyrus, visual
cortices, and the NAc. For example, NAc shows decreased activa-
tion for high temperatures, which may relate to punishment or
negative reinforcement signals. At the same time, controlling for
temperature, stronger NAc deactivation is related to lower pain
ratings, potentially signaling reduced motivational relevance.

In the individual PDMs, each voxel is assigned a weight
value—as in ICA, a voxel can thus participate in multiple com-
ponents or “networks,” potentially revealing multiple functional
roles of a voxel. Some regions participated in multiple PDMs in
this fashion—most notably, mOFC appears to play roles as types
(2–4) mediator in PDMs 2, 5, and 7. This may reveal a complex
function of the mOFC in pain and a mixing together of signal
from multiple distinguishable neural populations.

Combined PDM

The individual PDMs can be fused into a single, cPDM since
the individual PDMs are orthogonal to each other. The weights
are estimated from the training sample using a linear model
with the individual PDMs as regressors and reported pain as
the response. Summing the weighted PDMs results in a cPDM
map (see Fig. 1D and section Methods). In doing so, we lose
information about multiple functional roles played by each voxel
or region, but we obtain a single overall characterization of each
voxel and a map that can be applied as a predictive model. Voxel
weights may be both positive and negative in different PDMs,
because voxels may include neural ensembles participating in
different distributed circuits related to either more or less pain.
Thus, the individual PDMs represent a decomposition of voxels’
activity into different distributed components, while the cPDM
reflects each voxel’s net contribution (controlling for other vox-
els). Computing and analyzing the cPDM can thus help to clarify
overall relationships between regional activity and the predictor
and outcome variables.

Within the cPDM, individually significant clusters of posi-
tive mediators included S2, MCC, SMA, PAG, insula (including
anterior and dorsal–posterior parts), and the medial thalamus
(Figs 1D and 2). Negative mediators (stimulus-induced deactiva-
tions mediating increased pain) included mPFC, SPL, S1, and M1.

To further characterize the weights of the cPDM in nociception-
and pain-related regions of interest, we identified 24 distinct
anatomical regions that encode pain in human and animal
literature and examined the cPDM weights in each of these
regions (Fig. 1D, right and Fig. 3). The regions were divided
according to the thalamic atlas of Morel et al. (1997) and cortical
atlas of Glasser et al. (2016). Positive weights were found in
elements of the spinothalamic tract (bilateral VPL thalamus and
dorsal posterior insula [dpINS] and also S1), spino-parabrachial

tract (bilateral PBN and amygdala), spinoreticular tract (RVM and
PAG), spinohypothalamic tract (posterior hypothalamus), and
spinolimbic tract (mediodorsal [MD] and intralaminar [IL] nuclei
of the thalamus and aMCC). Many of these subcortical regions
have not been consistently identified in human studies, but are
crucial mediators of pain in animal models. These results do not
tell us that the activity in question is due to direct spinal input,
but they robustly identify a set of targets in areas containing
known pathways. Activity was bilateral in most regions, though
the amygdala and spinothalamic regions (S1, S2, and dpINS)
showed right-hemisphere dominance (most studies involved
left-sided stimulation).

Figure 3 shows the pattern energy (root-mean-square
weights per cubic cm of tissue) for positive and negative weights
in yellow and blue, respectively. It shows that weights are
mixed in the hypothalamus, RVM, amygdala, and S1, suggesting
that the local pattern weights in these regions are particularly
important, as they make the pattern response different from
the average across the anatomic region. Figure 3B shows the
pattern energy for all subdivisions of the thalamus, not only
those related to nociception. The pattern energy is high (large
wedge area) and weights are fairly uniformly positive (red
color) in thalamic nuclei known to have nociceptive inputs:
VPL, VPM, IL, and MD nuclei and the habenula (Hb). Roles for
all of these in pain are well documented (Willis and Westlund
1997; Shelton et al. 2012). Pattern energy is low and with mixed
signs on weights (purple color) in other sensory nuclei, including
lateral/medial geniculate and pulvinar nuclei, along with other
nuclei. Though a perfect match between any anatomical atlas
and functional imaging data cannot be guaranteed, these
findings suggest that the distribution of weights even across
the relatively small volume of the thalamus is meaningful. They
also confirm specific nuclei known mainly from animal and
invasive human studies as pain-related in human fMRI data and
suggest new potential pain-related nuclei to be confirmed and
further characterized, such as ventrolateral (VL), ventromedial
(VM), and anterior medial (AM) nuclei.

Examining the cPDM weights in established resting-state cor-
tical networks also yielded a selective profile across networks,
with weights concentrated in a few networks (Fig. 4). cPDM
weights were high and relatively uniformly positive (red wedges
in Fig. 4) in “somatomotor B,” “ventral attention A,” and “control
C” networks. (We adopt these names by convention only, and do
not suggest that the networks’ functions map onto these labels.)
The first two broadly match previous analyses of nociceptive
activity, though they provide additional information on mapping
to subnetworks. The latter is more surprising, as it includes
regions that are not typically nociceptive such as precuneus and
parts of posterior cingulate. “Somatomotor” and “ventral atten-
tion” weights were left-lateralized, and “somatomotor” most
strongly so. “Control C” weights were right-lateralized.

Clustering PDMs into Functional Networks

While the previous analyses examined the relationship of cPDM
weights with independently defined anatomical regions and
functional brain networks, in the next step we analyzed the
spatial clustering arising from the individual PDMs themselves.
The PDMs provide a dimensional view of coherent, distributed
processes, with each PDM a distinct dimension; clustering the
PDMs can reveal the network structure of the interregional
relationships. To do this, we used an iterative clustering
procedure to group regions based on interregional correlations
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Table 1 Neurosynth.org network associations

Sensorimotor Value learning Default mode Executive function Visual

r Features r Features r Features r Features r Features

0.369 Somatosensory 0.313 Reward 0.207 Self-referential 0.139 Mental 0.223 Visual

0.304 Motor 0.255 Money 0.202 Person 0.124 Intention 0.152 Eye

0.301 Stimulation 0.252 Anticipation 0.201 Self 0.117 Stories 0.141 Eyes

0.272 Sensorimotor 0.252 Rewards 0.197 Default 0.115 Attention 0.137 Color

0.266 Muscle 0.251 Incentive 0.176 Autobiographical 0.115 Visuospatial 0.126 Shape

0.257 Sensory 0.240 Monetary 0.157 Resting state 0.114 Story 0.108 Shapes

0.256 Pain 0.236 Outcome 0.149 Social 0.108 Reasoning 0.105 Spatial

0.245 Movements 0.196 Outcomes 0.149 Mentalizing 0.107 Default 0.102 Development

0.245 Production 0.185 Dopamine 0.148 Personal 0.106 Calculation 0.097 Distractor

0.240 Painful 0.179 Reinforcement 0.135 Thought 0.106 Retrieval 0.097 Target

Note: Top 10 features from neurosynth.org showing the highest Pearson’s correlation (r) with each network.

Figure 5. Functional networks mediating pain processing. (A) Five functional net-
works based on the clustering of brain activity in significant voxels from the PDM
analysis. Labels for colors are shown in (B). (B) Associations between functional

networks and PDMs. Ribbon width represents Dice coefficient similarity between
networks and PDMs.

in stimulus-evoked responses across trials without considering
stimulation temperatures or pain ratings (Kober et al. 2008;
Atlas et al. 2014). The cluster analysis of single-trial activity
from significant voxels within 10 PDMs revealed 26 functional
regions organized into five different functional networks
(Fig. 5A,B). Though somewhat limited, for exploratory purposes
a functional description of these networks was determined by
computing the similarity of each network with feature maps
generated by the meta-analytic tools on neurosynth.org (Yarkoni
et al. 2011). The top 10 features for each network are shown in
Table 1. Network names were chosen based on the functional
associations with neurosynth.org terms. For example, the top
three feature associations for network 1 were somatosensory,
motor, and stimulation. Based on these associations, we labeled
network 1 as “sensorimotor network.”

Network 1 (“sensorimotor”) included somatosensory regions
like dpIns, midinsula, S2, and S1 but also the PAG, MCC, SMA, M1,

and cerebellum. The second network (“value learning”) included
the NAc, ventral anterior insula, frontal operculum, and tem-
poral poles. Network 3 consisted of regions that are part of the
default mode network (DMN), including mPFC, mOFC, and RSC.
The fourth network (“executive function”) included precuneus,
inferior parietal lobule (IPL), SPL, dorsal lateral occipital cortex
(dLOC), temporal–parietal junction (TPJ), SFG, and dlPFC. Finally,
network 5 (“visual”) included mostly occipital, visual areas and
parts of the parahippocampal gyrus. The variety of functions
ascribed to the five networks mediating pain indicate that pain
processing involves multiple, distinct brain networks in addition
to somatosensory systems.

We next investigated associations between functional net-
works and individual PDMs by computing pairwise Dice similar-
ity coefficients across voxels, estimating the spatial similarity of
the PDMs and network maps (Fig. 5B). PDM 1 (type 1/2 mediators)
had the greatest overall similarity with any single network,
namely, with the sensorimotor network (D = 0.7). No other
network was substantially associated with PDM 1 (all D < 0.05).
PDMs 2, 5, and 6 are also associated to the sensorimotor network
(PDMs 2 and 6 are type 1/2 mediators). The value learning net-
work was related to PDMs 3, 6, and 9, with the highest similarity
to PDM 9 (D = 0.16)—thus, mainly components with type (3)/(4)
mediation (PDMs 3 and 9). Similarity between the DMN and PDM
4 was highest (D = 0.24, mainly type 2 mediators). Parts of
the DMN also overlapped with PDMs 3, 5, and 7. The executive
function network was associated with PDM 2 (D = 0.22) and PDM
3 (D = 0.23) and, to a lesser degree, with PDMs 4 and 7. Finally,
the visual network was related to PDM 3 (D = 0.38) and to a
lesser degree to PDMs 5, 7, and 9. The overall similarity pattern
between functional networks and PDMs shows that in contrast
to PDM1, few of the remaining PDMs are dominated by a single
network. More often PDMs were comprised of a mix of two or
three networks that together act as a pain mediator, reflecting
the complexity of the transformation from nociception into pain
experience.

Validation on an Independent Cohort

Although we estimated PDMs on a large and diverse data set,
there is a risk that the PDMs may overfit noise inherent in the
training data, potentially preventing generalization to other data
sets. We thus applied the PDMs to an independent test data
set, without re-estimating any model parameters. The resulting

vectors of potential mediators (m̃(k)
i ) were then entered into

standard multilevel mediation models. If the PDMs generalize
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Figure 6. Validation on independent data (N = 75). (A) The cPDM (dark circle) and all 10 individual PDMs (lighter circles) are significant mediators for independent
pain data test. (B) PDMs show specificity with respect to aversive sounds because no indirect effect is significant here. (C) Scatterplots of pain predicted from the
cPDM against empirical pain ratings for training (left) and test (right) pain data. Individual trials from all subjects are shown. Colors indicate different subjects. (D) The

prediction–outcome correlations between reported pain and pattern responses for the first PDM (PDM1), the cPDM, the NPS, the stimulus intensity-independent pain
signature 1 (SIIPS1), the combination of NPS and SIIPS1, and the Neurosynth reverse inference map for the term “pain.”

to the new data, the indirect ab effects should be significant on
the data test.

Applying the PDMs to independent pain data test (N = 75, an
independent community sample cohort of mixed races and sex)
revealed significant paths a and b for all 10 PDMs and the cPDM
(Fig. 6A). The indirect path ab was also significant for the cPDM
and all individual PDMs, suggesting that all PDMs are reliably

related to pain and generalize across cohorts. The magnitude
of the indirect effects (path ab) is monotonically decreasing
for the training data (Fig. 1B). On the data test, indirect path
coefficients were not strictly monotonically decreasing from
PDM 1 to PDM 10 (Figs 6A and S2), indicating some variability
of the PDM order across data sets, as expected. The cPDM and
the first two individual PDMs had the strongest effect in both
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data sets, suggesting that they capture the most important brain
activity for pain across data sets. Figure 6C shows the predicted
pain from the cPDM plotted against the empirical pain ratings
for pain training and data test.

To further corroborate the generalizability and robustness of
the PDMs, we also estimated 10 PDMs on the original test data
set (study 8) and cross-validated the new PDMs on the original
training data set (studies 1–7). The results were similar to the
main results presented here. Six out of 10 indirect paths were
significant when PDM estimation was done on the smaller sam-
ple. The indirect ab path coefficients for the first four PDMs were
highest when applying the new PDMs to the original training
data (Fig. S3). Generalization thus does not depend strongly on
the choice of the training data.

In order to test whether PDMs are mediators specifically for
somatic pain, we also applied the original PDMs to other, non-
painful aversive stimuli in study 8—physically (knife on plate)
and emotionally (screaming, crying, etc.) aversive sounds with
three predefined intensity levels of each stimulus type. Study 8
was designed to test specificity versus generalizability to aver-
sive sounds and match duration and approximate aversiveness
ratings based on pilot studies; trials were randomly intermixed
with heat pain trials. Application of the original PDMs on the
sound data revealed no significant indirect effects (Figs 6B and
S4) and only nine significant paths a or b in total. Thus, pain-
derived PDMs do not mediate the relationship between sound
intensity and intensity ratings for either type of sound. However,
they are not perfectly selective as the expression of some PDMs
correlates positively with ratings of sound unpleasantness (path
b). In summary, these results nevertheless indicate some degree
of specificity to somatic pain versus sound.

Comparison with Other Multivariate Models

Previous studies have investigated the direct relationship
between brain responses and pain reports, both using univariate
(Coghill et al. 1999; Bornhövd et al. 2002; Ploner et al. 2010) and
multivariate approaches (Marquand et al. 2010; Brodersen et al.
2012; Wager et al. 2013; Geuter et al. 2014; Woo et al. 2017). One
study trained a multivariate pattern, termed the NPS, which
predicts pain reports from brain activity that can be easily
applied to new data sets (Wager et al. 2013). In contrast to the
present approach, the estimation of the NPS did not account for
temperature–brain relationships; its goal was rather to predict
pain intensity without demonstrating mediation. In addition,
we compared it to the stimulus intensity-independent pain
signature (SIIPS1), which was trained to predict pain ratings after
removing linear effects of stimulus intensity on brain activity
and ratings (Woo et al. 2017). Additionally, the combination of
NPS and SIIPS1 as well as the Neurosynth reverse inference map
for the term “pain” was compared.

To examine relationships among the PDM models and other
established models, we compared prediction–outcome correla-
tions (see Fig. 6D) Correlations were calculated across individual
differences in response values for each model. The first PDM
performed best (mean r = 0.53), followed by the cPDM (mean
r = 0.50). The NPS, the combination of NPS and SIIPS1, and the
Neurosynth reverse inference map performed roughly equiva-
lently (mean r = 0.26, 0.28, and 0.25, respectively). Finally, SIIPS1
performed the worst (mean r = 0.13). Prediction performance
between PDM1 and cPDM did not differ significantly, while both
PDM-based models significantly outperformed the remaining
models (qFDR < 0.05, all P < 0.2e−11, all t(74) > 8.4).

The cPDM was highly correlated with PDM1 (r = 0.95), but
only moderately correlated with NPS (r = 0.64) and Neurosynth
(r = 0.66). The NPS, by contrast, was more strongly correlated with
Neurosynth (r = 0.82) than the PDM models. The SIIPS1 pattern
was distinct, and essentially uncorrelated with either the PDM
models, NPS, or the Neurosynth (r ≤ 0.15). This is expected, as the
SIIPS was designed to be independent of stimulus intensity.

Comparison with Univariate Mediation Analysis

In contrast to the present multivariate PDM approach, mass-
univariate mediation analyses of fMRI data estimate indepen-
dent mediation models for each voxel (Wager et al. 2008; Atlas
et al. 2014). The intersection of voxels with significant paths a,
b, and ab is then interpreted as a set of mediating brain regions.
In order to compare the novel high-dimensional PDM approach
to the univariate mediation analysis, we first computed a mass-
univariate mediation analysis on the training data set (studies
1–7).

The univariate analysis identified the MCC, cerebellum, pos-
terior and midinsula, S2, and S1 as brain mediators defined as
the intersection of the coefficient maps for paths a, b, and ab
at FDR q < 0.05 (Fig. 7). Comparing these results to the cPDM
revealed both similarities and some notable differences (Figs 2
and 7). Both maps include somatosensory regions in aMCC,
insula, and S2, as well as the cerebellum. Additional regions with
positive weights in the cPDM included the thalamus, PAG, and
other midbrain regions like the PBN not included in the uni-
variate model. Furthermore, negative contributions in SPL and
S1 were not identified in the univariate model. Such results are
expected if some brain regions make detectable contributions
only after controlling for the influences of other brain regions;
this is an advantage of multivariate predictive approaches to
neuroimaging analysis.

Discussion
In brief, our analyses identified brain mediators of pain that
extend substantially beyond the boundaries of traditional “pain
matrix” regions, including prefrontal and midbrain regions pre-
viously thought to play an “extranociceptive” or modulatory role
(Kucyi et al. 2012; Geuter et al. 2013; Seminowicz and Moayedi
2017). Integrated activity across these pathways, as reflected in
the cPDM, predict human pain intensity more accurately than
previous pain predictive models.

Brain regions primarily associated with motivational, learn-
ing, or executive functions have been considered to modulate
activity in a pain-processing brain system. The involvement
of those brain regions in pain processing has been shown in
a multitude of studies (e.g., Bushnell et al. 2013; Seminowicz
and Moayedi 2017). Here, we show that many of these regions,
including NAc, dlPFC, mPFC, and mOFC, are formal mediators of
the stimulus–pain relationship. Their activity is directly related
to stimulus intensity and at the same time to pain when con-
trolling for stimulus intensity. The broad range of psychological
functions associated with the regions serving as formal pain
mediators is in line with the idea that brain regions related to
motivational, learning, and executive functions are much more
directly involved in the generation of pain. Their mediating
role suggests that they are not necessarily external modula-
tors to a distinct pain system but that primarily non–pain-
processing brain regions play more a direct role in generating the
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Figure 7. Comparison with univariate mediation analysis. Top three panels show individually significant voxels for paths a (blue), b (green), and ab (purple) from a
univariate mediation analysis at FDR q < 0.05. Panel 4 shows voxels mediating the relationship between temperature and pain, that is, the overlap between the three
paths (red).

pain experience, further blurring the boundaries of a so-called
pain matrix.

One of the most prominent functions of pain is its moti-
vational drive since it is associated with tissue damage
(Navratilova and Porreca 2014; Geuter et al. 2016). Learning
about painful stimuli is important to learn to minimize future
harm. Pain stimulation relates to activity in the NAc, a brain
region associated with motivational learning (Becerra et al.
2013; Woo et al. 2015). In line with the NAc’s role in pain in
humans (Baliki et al. 2010, 2012) and animal models (Chang
et al. 2014; Navratilova and Porreca 2014; Schwartz et al. 2014;
Ren et al. 2016), NAc also acts as a formal mediator between
nociceptive stimuli and pain. Furthermore, we show that NAc
function for pain is based on opposing relationships of NAc
activity with stimulus intensity (negative) and pain (positive)—
NAc shows stimulus intensity-dependent deactivation, with
stronger deactivation mediating decreased pain, consistent with
regulatory negative feedback mechanisms. The NAc might exert
its control in this feedback loop indirectly via its connections
with the hypothalamus or mPFC as indicated by studies in
humans and animals (Baliki et al. 2012; Schwartz et al. 2014;
Lee et al. 2015; Woo et al. 2015). However, the exact contribution
of the NAc to pain perception might rely on more complex
temporal dynamics that cannot be resolved in the current data
set and are still a matter of debate (Baliki et al. 2010; Becerra
et al. 2013) as is its role in aversive learning more generally (Roy
et al. 2014; Matsumoto et al. 2016).

Notably, another novel feature of the present cPDM map
is that it contains positive weights in the bilateral PBN and
specific parts of the amygdala, as well as RVM and PAG. Though
definitive localization to these nuclei is difficult with any human
method, activation is consistent with their locations in atlases
and previous studies, and identifying them robustly in humans
could provide an important step forward in the ability to study
both bottom-up and top-down effects on crucial nociceptive and
pain-modulatory pathways.

The PAG and RVM receive nociceptive afferents and form a
major descending bulbospinal tract that controls the balance
of descending pain-inhibitory and facilitatory projections to the

spinal dorsal horn (Fields 2004; De Felice et al. 2011; Wager and
Atlas 2015; Geuter et al. 2017b). Imaging studies have identified
PAG and RVM activation during both evoked pain and pain-
modulatory conditions like placebo analgesia (Tracey et al. 2002;
Eippert et al. 2009a; Tinnermann et al. 2017). But these regions
have not, to our knowledge, been identified as mediators of
human stimulus–pain relationships.

The PBN has rarely been reported in neuroimaging studies
but is an emerging target of great importance in representing
danger signals related to pain and other bodily inputs. The PBN
is a major center for pain and other forms of interoception and
chemical sensation, including taste, itch, dyspnea, and vagally
mediated immune surveillance and sickness behavior (Goehler
et al. 2000; Kelley et al. 2003). A major pathway composed of
CGRP neurons projects from the PBN to the central nucleus of
the amygdala. This pathway is activated in response to danger
signals across multiple sensory modalities, including visceral
and cutaneous pain (chemical, mechanical, thermal, and elec-
trical) and itch, across ascending trigeminal, spinal, and vagal
sensory pathways (Han et al. 2015; Campos et al. 2018). It is
crucial for representing danger signals that produce avoidance
behavior, including joint control of learned pain avoidance and
food intake, which is strongly inhibited by its activation (Han
et al. 2015; Sato et al. 2015; Campos et al. 2018). PBN also plays a
role in pain regulation by sending non-CGRP projections to the
RVM (Roeder et al. 2016). PBN stimulation in humans can reduce
chronic pain (Katayama et al. 1985). FMRI activation consistent
with human PBN has been found to respond to noxious stimula-
tion, correlate with human parasympathetic activity (Napadow
et al. 2008), and respond to vagal stimulation (Frangos et al.
2015) and acupuncture (Napadow et al. 2009). Our results suggest
it may be possible to measure activity in human PBN–central
amygdala and other rubrospinal pathways.

Among regions commonly associated with pain in neu-
roimaging studies, including the medial thalamus, PAG, S2,
insula, MCC, SMA, and S1 (Dum et al. 2009), activity increased
due to increasing temperatures, and higher activity was related
to stronger pain, controlling for temperature. This set of
pain-associated regions (Apkarian et al. 2005; Bushnell et al.
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2013; Duerden and Albanese 2013; Jensen et al. 2016) was
complemented by anterior temporal regions and the cerebellum,
which share the same functional response profile. A positive
relationship with both temperature and pain rating is in-line
with a traditional, feed-forward encoding view of nociception
(Bushnell et al. 2013; Atlas et al. 2014; cf. Geuter et al. 2017a).

By contrast, the mPFC, SPL, RSC, precuneus, and parts of S1
and M1 were negatively related to both temperature and pain.
The mPFC, RSC, and precuneus are part of the DMN, which has
been associated with mind-wandering and internal thoughts
(Andrews-Hanna et al. 2010; Kucyi and Davis 2015). The negative
mediating role of the DMN regions could be related to the dis-
ruption of ongoing thought processes by the painful stimulation
or attentional refocusing from internal to external sensations.
The observation that some regions, like S1, participate in both,
positive and negative, mediation relationships may indicate the
mixing of signals from distinct neuronal populations within sin-
gle fMRI voxels. Such mixing of activity patterns is also observed
across components from ICA.

In addition, there are multiple sources of endogenous
variation in drivers of pain beyond stimulus intensity, including
attention, arousal, and endogenous variation in ascending
spinal afferents due to processing within the spinal cord (Eippert
et al. 2009b; Geuter and Büchel 2013; Tinnermann et al. 2017).
Because each study included a different psychological manip-
ulation to modulate pain, our approach will only identify brain
mediators common to all studies. Differences across studies
thus increase the robustness of the identified brain mediators
but also reduce the amount of variance that will be explained
in each single study. Additional factors introducing variance
across studies include context effects (Leknes et al. 2013),
temporal effects within and across trials (Jepma et al. 2014),
and prestimulus fluctuations in brain activity (Ploner et al.
2010). Variation in pain related to variability of afferent input,
for example, endogenous trial-to-trial variation in spinal cord
processing, will be captured in path b in the mediation model.
Other endogenous sources of variation unrelated to afferent
input may be captured in the direct effect (path c′) and will not
be reflected in a brain mediation model that seeks to connect
noxious stimulus intensity with pain. Similarly, potential
nonlinear relationships between stimulus intensity and pain or
differences across participants might not be adequately repre-
sented by linear brain mediators. However, using linear models
instead of nonlinear models offers better interpretability.

In summary, the new high-dimensional mediation analysis
revealed a comprehensive picture of brain responses underly-
ing the complex, multifaceted pain experience. Several brain
regions, such as the mPFC, thalamus, NAc, and PBN, are shown to
directly and formally mediate stimulus–pain relationships. The
functional diversity of the brain mediators observed here offers
a better understanding of the brain responses underlying the
complexity of the pain experience.
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Supplementary material is available at Cerebral Cortex online.
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