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Consider a challenge many researchers face in different 
contexts: Given a set of candidate predictors, how 
should one decide which smaller set of predictors to 
include in a regression model? Ideally, the set of rele-
vant predictors would be based on strong theory, the 
size of the sample would be generous, and the number 
of candidate predictors would be tiny in comparison 
with the sample size. In this ideal case, it may be simple 
to include all relevant predictors and report the results.

However, as the pool of potentially relevant predic-
tors grows, the problem becomes thornier. Perhaps 
theory predicts that any of the predictors might be 
related to the outcome, or perhaps there is insufficient 
prior research to guide the choice. If all predictors are 
included at once, very few may be meaningfully related 

to the outcome while simultaneously competing for 
variance with all the others. In the extreme case, if the 
number of candidate predictors meets or even exceeds 
the sample size, including all the predictors is not pos-
sible. Alternatively, often the bivariate correlations 
between each predictor and the outcome are screened, 
and predictors with significant correlations are included 
in a multivariate model (e.g., Lavie et al., 1995; Safren 
et al., 2016; Schultz et al., 2004). This common practice 
has substantial weaknesses, however. When predictors 
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Abstract
Frequently, researchers in psychology are faced with the challenge of narrowing down a large set of predictors to 
a smaller subset. There are a variety of ways to do this, but commonly it is done by choosing predictors with the 
strongest bivariate correlations with the outcome. However, when predictors are correlated, bivariate relationships may 
not translate into multivariate relationships. Further, any attempts to control for multiple testing are likely to result in 
extremely low power. Here we introduce a Bayesian variable-selection procedure frequently used in other disciplines, 
stochastic search variable selection (SSVS). We apply this technique to choosing the best set of predictors of the 
perceived unpleasantness of an experimental pain stimulus from among a large group of sociocultural, psychological, 
and neurobiological (functional MRI) individual-difference measures. Using SSVS provides information about which 
variables predict the outcome, controlling for uncertainty in the other variables of the model. This approach yields new, 
useful information to guide the choice of relevant predictors. We have provided Web-based open-source software for 
performing SSVS and visualizing the results.
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are correlated, as they very often are in psychology, 
screening predictors on the basis of bivariate correla-
tions may easily translate into a multivariate model in 
which no predictors have a meaningful, unique rela-
tionship with the outcome (i.e., partial regression coef-
ficients are nonsignificant). Other relationships may not 
be detected without controlling for one or more con-
founding variables. Further, if any effort is made to 
guard against false positives by controlling for multiple 
testing, power to detect meaningful effects is greatly 
reduced.

In contrast, it may be appealing to take an algorith-
mic approach to selecting predictors, such as stepwise 
regression or all-possible-subsets regression. In step-
wise regression, a model is built by automatically add-
ing and removing individual predictors, one step at a 
time, on the basis of the significance of individual terms 
or changes in R2. This produces results that capitalize 
highly on sampling error, have poor replicability, and 
do not correctly identify the best predictor set of a 
given size (e.g., Henderson & Denison, 1989; Thompson, 
1995). Even though the use of stepwise regression has 
long been discouraged, it continues to be used 
(McNeish, 2015), perhaps in part because the method 
is an easily implemented solution to a vexing problem. 
All-possible-subsets regression is based on selecting a 
model with the best R2 or other criterion, such as 
Akaike’s information criterion or the Bayesian informa-
tion criterion. Because the number of possible models 
increases exponentially with the number of predictors 
(e.g., 30 predictors means 230, or 1,073,741,824, possible 
models), methods to select the “best” model on the 
basis of all possible subsets are also highly sensitive to 
chance variability and have poor generalizability 
(Olejnik, Mills, & Keselman, 2000).

In this article, we present stochastic search variable 
selection (SSVS), a Bayesian variable-selection method 
to aid researchers facing this common scenario. The 
article is accompanied by an online application for per-
forming SSVS and visualizing the results. The approach 
we demonstrate is not new (George & McCulloch, 1993, 
1997), but to our knowledge, it has rarely been applied 
in psychological research. SSVS1 is a popular method 
in more biologically based research, such as genome-
wide association studies (Lee, Sha, Dougherty, Vannucci, 
& Mallick, 2003), but has also been used in applications 
ranging from health outcomes (e.g., range of predictors 
for metabolic syndrome; Cheraghi et al., 2018) to eco-
nomic variables (e.g., economic and social factors asso-
ciated with inflation; Sala-I-Martin, Doppelhofer, & 
Miller, 2004). By accounting for model uncertainty, 
Bayesian variable-selection methods both increase 
power and decrease false-positive results, compared 
with traditional approaches (Swartz, Yu, & Shete, 2008; 

Viallefont, Raftery, & Richardson, 2001). SSVS provides 
information about the relative importance of predic-
tors,2 accounting for uncertainty in which other predic-
tors are included in the model. In this article, we 
present a common formulation of SSVS and compare 
it with standard approaches in the context of an exam-
ple from our own work in which we faced the variable-
selection problem. Many other forms of Bayesian 
variable selection exist, and we hope that this article 
will help spark interest in understanding which for-
mulations perform best under which conditions (we 
recommend Fragoso, Bertoli, & Louzada, 2018, for a 
recent systematic review).

First, we introduce our focal example and describe 
SSVS. We then compare results obtained with SSVS and 
with standard variable selection based on bivariate rela-
tionships and introduce our online application for per-
forming SSVS. Finally, we place SSVS in context with 
other variable-selection methods and present results of 
a simulation comparing SSVS with lasso regression 
(Tibshirani, 1996).

Disclosures

The scripts and documentation for the simulation, plots, 
and applied analyses in this article are available online 
at the Open Science Framework, at https://osf.io/
m8djx/. The Supplemental Material (http://journals 
.sagepub.com/doi/suppl/10.1177/2515245919885617) 
contains descriptions of and descriptive statistics for all 
the questionnaires used in the reported analysis.

The Example: Predicting the Perceived 
Unpleasantness of Pain

Although pain is a universal part of (neurotypical) 
human experience, the way people experience and 
respond to pain is highly variable. Individual differ-
ences in pain sensitivity likely originate from a variety 
of sources, as we have outlined in our recently pub-
lished neurocultural model of pain (S. R. Anderson & 
Losin, 2017). These sources range from genetic varia-
tion related to the endogenous pain modulatory system, 
to socially learned coping styles, to previous experi-
ences with pain and other stressful life events. Char-
acterizing the contributions that these different 
psychological, sociocultural, and neurobiological fac-
tors make to individual differences in pain is of great 
interest to both basic scientists and clinicians. Yet, 
because of the myriad of potential factors contributing 
to individual differences in pain, the combination of 
factors that are most influential is still not well under-
stood. SSVS is therefore an ideal approach for tackling 
this problem.

https://osf.io/m8djx/
https://osf.io/m8djx/
http://journals.sagepub.com/doi/suppl/10.1177/2515245919885617
http://journals.sagepub.com/doi/suppl/10.1177/2515245919885617
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Here we apply SSVS to a data set from an experiment 
in which participants underwent experimental pain 
induction using contact heat to the forearm while 
undergoing functional MRI (fMRI). During the pain 
stimulation, we collected several brain-activity mea-
sures, and after each heat stimulation, participants rated 
the intensity and unpleasantness of the pain they expe-
rienced. For the present analysis, we focus on the 
unpleasantness ratings as our dependent variable. 
These ratings were averaged over nine trials (α = .91).

Prior to their lab visit, participants completed a bat-
tery of self-report questionnaires online via Qualtrics, 
and additional self-report measures were administered 
during the fMRI scanning session. The measures 
selected were hypothesized to contribute to individual 
differences in pain rating and to assess different aspects 
of cultural background and the pain experience out-
lined in our neurocultural model of pain, including 
stressful life experiences, mood, beliefs about the 
causes and consequences of pain, responses to pain 
(e.g., coping strategies), and pain context (e.g., trust in 
the person performing the painful procedure). We also 
included measures of personality and demographics, 

as those have also been demonstrated to influence pain 
responses (K. O. Anderson, Green, & Payne, 2009; Kim 
et  al., 2017; Shiomi, 1978). The self-report measures 
corresponding to each category are listed in Table 1. 
Details and descriptive statistics for each questionnaire 
are available in the Supplemental Material.

Finally, we included in our analysis three measures 
of brain responses to pain. The first brain measure was 
each person’s expression of the Neurologic Pain Signa-
ture (NPS), a machine-learning-derived multivariate 
pain-predictive pattern of brain activity (Wager et al., 
2013). The second and third measures focused on activ-
ity within the nucleus accumbens (NAcc) and the ven-
tromedial prefrontal cortex (vmPFC). These two brain 
regions lie outside the regions involved in the NPS but 
are associated with the affective-motivational aspects 
of pain(Baliki et al., 2012) and thus may be of particular 
relevance to predicting pain unpleasantness (Price, 
2000). The Supplemental Material provides a full 
description of each brain measure.

As does standard regression analysis, SSVS requires 
complete data for the dependent variable and all pre-
dictors. However, whereas a series of regression models 

Table 1. Self-Report Questionnaires Administered Prior to the Experimental Pain Induction

Predictor category Measures

Pain precursors: stressful 
life events

Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST) 
Barratt Simplified Measure of Social Status (BSMSS) 
Brief History of Pain Questionnaire (BHPQ, 3 subscales)
Experiences of Discrimination (EOD, 5 subscales) 
Life Events Checklist (LEC) 
Stress and Adversity Inventory (STRAIN, 6 subscales) 
Williams Major and Everyday Discrimination Questions (WQ)

Pain precursors: mood Five Facet Mindfulness Questionnaire (FFMQ, 2 subscales)
Imaginal Process Inventory (IPI, 3 subscales) 
Mood and Anxiety Symptom Questionnaire (MASQ) 
Positive and Negative Affect Schedule (PANAS, 4 subscales) 
Ruminative Response Scale (RRS, 3 subscales) 
State and Trait Anxiety Inventory Form X (STAI)

Pain precursors: beliefs 
and expectations

Fear of Pain Questionnaire-III (FPQ, 3 subscales) 
Health and Illness Scale (HIS, 7 subscales) 
Pain Beliefs Questionnaire (PBQ, 2 subscales)

Pain responses Coping Strategies Questionnaire 24 (CSQ, 8 subscales) 
Emotion Regulation Questionnaire (ERQ, 2 subscales) 
Kohn Reactivity Scale (KRS) 
Pain Catastrophizing Scale (PCS, 3 subscales)

Pain context and 
communication

Similarity Visual Analog Scale (SVAS, 2 subscales)
Trust Visual Analog Scale (TVAS) 
Wake Forest Physician Trust Scale (WFPTS)

Personality and identity Big Five Inventory (BFI, 5 subscales) 
Multigroup Ethnic Identity Measure (MEIM)

Demographic variables Items asking participants to report their age, sex, and race-ethnicity

Note: Subscales of some measures were omitted to reduce participants’ burden. The number of subscales is 
indicated if more than one subscale was included in the model-selection process. See the Supplemental Material 
for additional details, including references, information about subscales and scoring, and descriptive statistics.
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can maximize available sample size on a model-by-
model basis (i.e., through pairwise deletion), SSVS 
requires complete cases for all measures included in 
the analysis. In the initial pool of 104 predictors for 93 
participants, the rates of missingness were low for all 
the predictors (mean missingness = 2%), but only 48 
participants had complete data on all predictors. There-
fore, in order to maximize both sample size and the 
candidate predictor set for this analysis, we excluded 
predictors with more than 6% missing responses and 
retained cases with complete data for the remaining 
measures. Our final data set for this example consisted 
of data from 74 participants who provided values for 
our dependent variable, pain unpleasantness ratings, 
and 75 predictors of those ratings.

Note that although in this example we had about as 
many variables as observations, SSVS is applicable to 
less extreme scenarios (e.g., 10 candidate predictors in 
a large sample) or more extreme scenarios. In fact, SSVS 
has been regularly applied in genomewide association 
studies involving thousands of genes (Fridley, 2009; Lee 
et al., 2003), though some computational adjustments 
may be necessary when the number of predictors far 
exceeds the sample size. Other useful applications dif-
ferent from the example discussed here might be to 
determine a subset of predictors that predict a behavior 
or diagnosis. For example, which set of predictors 
together best predict a measure of inflammation, which 
individuals evacuate ahead of a hurricane, or willing-
ness to get HIV testing?

The Standard Approach

First we consider the results obtained for our example 
when we selected predictors on the basis of bivariate 
correlations with the pain unpleasantness ratings. In 
such an analysis, researchers might choose to consider 
predictors with correlations that are significant at the 
α = .05 level, or they might choose a more liberal cutoff, 
such as α = .1, to prioritize discovery. A more stringent 
cutoff or adjustment might be adopted to account for 
multiple comparisons. In this example, the p values for 
the bivariate relationships with unpleasantness ratings 
were less than .1 for 10 predictors, less than .05 for 8 
predictors, and less than .01 for 3 predictors. A Benjamini-
Hochberg correction for multiple comparisons would 
result in 1 significant predictor. The choice of cutoff is 
arbitrary, but in our experience researchers tend to use 
a less stringent cutoff than α = .05 for the purpose of 
exploratory variable selection, so we adopted this 
approach for our example.

Table 2 shows the results of a regression model 
including the 10 predictors with a bivariate correlation 
meeting the criterion of α = .10. In the full model,  
3 predictors remained significant: not having filed  

a formal complaint of discrimination (Experiences of 
Discrimination Subscale 5), pain catastrophizing during 
the fMRI scan (Coping Strategies Questionnaire Sub-
scale 5), and belief in supernatural causes of illness 
(Health and Illness Scale Subscale 7). The model R2 
indicates that together the set of predictors explained 
45.9% of the variance in pain ratings.

Fundamentally, each individual correlation coeffi-
cient tests a bivariate relationship, providing a response 
to the question, “Is there a significant relationship 
between a given predictor x and outcome y, ignoring 
all other factors?” The multivariate regression model 
then provides, for each predictor, a response to the 
question, “Is there a significant relationship between x 
and y, above and beyond the relationships for all the 
other predictors in the model?” Unfortunately, the bivar-
iate tests may select a set of predictors that are all 
themselves highly intercorrelated, and they may be 
redundant in a model together. Or a predictor may be 
meaningfully related to the outcome only when the 
model controls for one or more other predictors. By 
contrast, SSVS can be used to answer a slightly different 
question: “Is a given x a consistent predictor of y, 
accounting for uncertainty in the other variables 
included in the model?”

Stochastic Search Variable Selection

Briefly, SSVS samples thousands of regression models 
in order to characterize the model uncertainty regarding 
both the predictor set and the regression parameters. 
The models are selected using a sampling process that 
is designed to select among “good” models, that is, 
models with high probability. After sampling, rather 
than selecting the best model according to a specified 
criterion (e.g., the best Akaike’s or Bayesian information 
criterion or the highest model R2), researchers can 
examine the proportion of times each predictor was 
selected, which provides information about which pre-
dictors reliably predict the outcome, accounting for 
uncertainty in the other predictors in the model.

The SSVS procedure builds upon a standard regres-
sion model for y with some number of predictors p:

y x x xi ii i p ip= + + + +β β β β ε0 1 21 2 ... .

In SSVS, parameter estimates are obtained using a 
Bayesian framework for estimation, rather than the 
method of ordinary least squares. In the Bayesian 
framework, in addition to the regression model for the 
data, a prior distribution is specified for each parameter. 
Prior distributions are simply expressions of the 
researcher’s beliefs (and uncertainty) about the values 
of the parameters. Bayesian estimation combines these 
priors with the model and data to arrive at the posterior 
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distribution, which summarizes updated beliefs and 
uncertainty about the parameters.

A researcher could choose to provide no prior infor-
mation about the intercept by specifying a totally flat 
prior for it (e.g., Uniform(–∝,∝)), as we did for our 
focal example. For each regression coefficient, the prior 
might be normally distributed, be centered at zero, and 
have large variance. For example, N(mean = 0, SD = 
10) would indicate a belief that zero is the most likely 
value of the coefficient and that most values are less 
than 20 in absolute value. Because the model is more 
easily estimated in terms of the inverse residual vari-
ance, or precision (1/σ2), a prior for this parameter 
could be ~ ( . , . )Gamma a b= =01 01 , which would allow 
positive values in a wide range. This is the prior speci-
fication we used for the analysis presented later in this 
section.

Simply adding prior distributions to a regression 
model to make it Bayesian does not actually help solve 
the variable-selection problem, however. The results 
from Bayesian estimation of the model as just specified 
would be essentially identical with the results from 
ordinary least squares regression (given that the priors 
are relatively uninformative). Although this model could 
be used to get an estimate for every β, SSVS is useful 
when the researcher believes (as we did) that many of 
the βs are essentially zero and wants to screen out 
candidate predictors that are not important.

Therefore, the final component of the model is a set 
of binary indicator variables δj, one for each predictor, 
that toggle predictors in and out of the model:

y x x xi p ii i p ip= + + + +β δ β δ β δ β ε0 1 1 2 21 2 ... .

If δj = 1, variable j is included in the model. If δj = 
0, variable j is not included (and its βj is not estimated). 

SSVS (George & McCulloch, 1993) treats the full set of 
indicator variables δ as unknown parameters to be esti-
mated. The estimation is designed to characterize the 
uncertainty about the most probable values for the 
coefficients β and the best set of predictors δ.

The model specification also includes a prior prob-
ability for each δj; we chose the common value of .5, 
so that each predictor had a 50/50 prior probability of 
being included the model. The resulting prior for the 
regression coefficients in SSVS is called a spike-and-slab 
prior, pictured in Figure 1, because this distribution is 
a mixture of a spike at zero and a relatively flat “slab” 
of nonzero values.

The model parameters are estimated using Markov 
chain Monte Carlo (MCMC) estimation, which is a 
method used in Bayesian statistics to obtain samples 
from the posterior distribution. These samples charac-
terize the uncertainty about probable values for the 
parameters, indicating which predictors should be 
retained in the model and their associated regression 
coefficients.

For our example of predicting pain unpleasantness 
ratings, we ran the MCMC sampler for 10,000 iterations. 
Because MCMC requires a burn-in period to help ensure 
that the chain converges to the target distribution, we 
discarded the first 1,000 samples. Note that it is impor-
tant to standardize the explanatory variables before 
performing variable selection, so that the priors (which 
have a fixed scale) do not differentially influence pre-
dictors that are on different scales. After performing 
SSVS, it is fine to use whatever scale is easiest for inter-
pretation. At each iteration, estimates of inclusion indi-
cators, regression coefficients, and (inverse) variance 
are obtained. Figure 2 shows the estimates of the 
regression coefficients for each of the 75 predictors in 
a single iteration of the sampler. The predictors with a 
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coefficient value of zero are those that were not 
included in the model for this particular iteration (i.e., 
δj = 0 for these predictors).

In 10,000 iterations of the sampler, only a tiny frac-
tion of the possible models would be visited; we could 
not hope to visit all models and choose the single best 
one. Fortunately, our goal was to sample many high-
probability models and identify the predictors that 
appeared most often. The relevant information is sum-
marized in Figure 3, which shows the proportion of 
times each predictor was included in the sampled mod-
els, referred to as the marginal inclusion probability 
(MIP). It is interesting to compare the inclusion prob-
ability for each predictor with the magnitude of its 
correlation with pain unpleasantness, also plotted in 
Figure 3. Although higher correlations tend to corre-
spond to higher inclusion probabilities, the relationship 
between bivariate correlation and MIP is imperfect, 
r(73) = .54, p < .001.

To assess MCMC convergence and ensure that SSVS 
results are stable, it is necessary to compare results 
across two or more chains using random starting values 
(Swartz et  al., 2013). Unstable results across chains 
would suggest that more iterations are needed for 
MCMC convergence and that the number of burn-in 
iterations should be increased. We ran SSVS a second 
time and computed the correlation between the esti-
mated MIPs for each parameter across the two chains. 
The correlation we obtained was above .99.

In this example, we found 20 predictors with MIPs 
of .5 or greater. Although we could have chosen to 
include all of these predictors in a model together, .5 
is not a firm cutoff or recommended threshold, and 20 
predictors is still too large a set for meaningful inter-
pretation. Visualizing the inclusion probabilities as in 
Figure 3 makes it possible to examine the pattern of 
relative magnitudes. A major reason why researchers 
should not rely on a specific cutoff for the MIPs is that 
they will vary depending on the sample size, the total 
number of predictors, and the prior probability of inclu-
sion; however, the pattern of relative MIPs (i.e., which 
predictors have the highest MIPs) should remain sub-
stantially stable (see Box 1). Our choice of .5 as the 
prior inclusion probability may seem reasonably “unin-
formative” (or objective); however, note that this value 
actually implied prior belief that the model should 
include .5 × 75, or 37.5, predictors, which was still too 
large for our sample size.

For our example, we chose to select the predictors 
with the 10 highest MIPS, which also gave us a model 
with the same number of predictors as the model based 
on bivariate correlations. Table 2 shows the results of 
a standard regression model in which we included the 
10 predictors with the highest MIPs. This subset of 10 

predictors chosen using SSVS has some overlap with 
the predictor set chosen via the bivariate selection 
model: Six predictors were chosen using both model-
building strategies. However, note that 6 of the 10 pre-
dictors in the SSVS selection model significantly 
predicted unpleasantness ratings, whereas the bivariate 
selection resulted in 3 significant predictors. The 3 sig-
nificant predictors in the SSVS model that were not 
included in the bivariate selection model are belief that 
exposure causes illness (Health and Illness Scale Sub-
scale 3), mean activity in the vmPFC during pain, and 
global perceptions of racial discrimination (Experiences 
of Discrimination Subscale 4). This model has an R2 
value of .59 (adjusted R2 = .53) and explains 13% more 
of the variability in pain unpleasantness ratings com-
pared with the alternate model with the same number 
of predictors.

Online Application for SSVS

One barrier to the use of SSVS analyses in psychological 
research has been the lack of an easy-to-use tool with 
which to conduct such analyses. Some R packages, such 
as BoomSpikeSlab (Scott, 2018), offer functionality for 
SSVS analyses. However, these packages can be confus-
ing and difficult to implement, and some require exten-
sive R coding experience. All of these factors may 
discourage researchers from using these packages. To 
address this barrier, we used the shiny package (Chang, 
Cheng, Allaire, Xie, & McPherson, 2018) in R (R Core 
Team, 2017) to create a free Web application called 
SSVSforPsych (https://ssvsforpsych.shinyapps.io/ssvs 
forpsych/). This user-friendly Web application is outfit- 
ted with a graphical user interface that relieves the need 
for complicated coding. The application code builds on 
R code for SSVS (Reich, 2014). We hope that SSVSfor 
Psych will enable even users who are unfamiliar with R to 
easily perform variable selection and visualize the results.

After navigating to the SSVSforPsych Web page, 
users can upload their data in a variety of common file 
formats (e.g., comma-delimited, text, Excel, SPSS). If 
predictors are unstandardized, the program will per-
form standardization. Users then have the option to 
toggle the parameter values of several inputs in the 
SSVS analysis, including the prior inclusion probability, 
the number of burn-in iterations, and the number of 
samples. The application defaults to a prior inclusion 
probability of .5, 10,000 samples, and 1,000 burn-in 
(discarded) iterations. After selecting parameter values, 
users select the set of predictors and the outcome they 
wish to analyze. Additionally, they have the option to 
select random starting values, which should be used 
when assessing MCMC convergence, as discussed in 
the previous section.

https://ssvsforpsych.shinyapps.io/ssvsforpsych/
https://ssvsforpsych.shinyapps.io/ssvsforpsych/
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After the sampling concludes, SSVSforPsych uses the 
ggplot2 graphics package (Wickham, 2016) to generate 
a table of the results and a plot (similar to Fig. 3) dis-
playing the MIPs. Tables and plots can be downloaded 
as .csv spreadsheets and .png plots. SSVSforPsych auto-
matically updates results, tables, and graphs in real time 
when users submit changes to any of the inputs, so 
users can analyze their data under various statistical 
assumptions. For example, if the prior probability is 
changed from .5 to .3, SSVSforPsych will rerun the 
analysis to reflect the new estimated values.

SSVSforPsych is not designed to handle missing data, 
and attempts to run analyses with missing predictor or 
outcome data may result in error messages or mislead-
ing results. We advise users to upload data without 
missing values for any variables to be used in the analy-
sis. However, developing software for performing SSVS 
in the presence of missing data is an important direc-
tion for future research.

Comparison With Other Methods

Many other approaches to reducing a candidate set of 
predictors exist. These include ridge regression, the 

lasso (Tibshirani, 1996), the elastic-net lasso (Zou & 
Hastie, 2005), various machine-learning approaches 
(see, e.g., Hastie, Tibshirani, & Friedman, 2009), and 
principal components analysis. In general, machine-
learning approaches focus on prediction rather than 
interpretation of the predictor set. Similarly, principal 
components analysis performs data reduction, but inter-
pretation of the components as predictors is not appro-
priate. Dominance analysis (Budescu, 1993) is another 
method used to evaluate the relative importance of 
predictors within a regression model; it is used to rank 
a set of predictors within a defined model and not for 
variable selection. Lasso methods are most similar to 
SSVS, in that they can be used to make binary decisions 
about inclusion or exclusion of predictors. In fact, a 
connection between lasso methods and some SSVS for-
mulations has recently been demonstrated under some 
conditions (Yuan & Lin, 2005). However, whereas SSVS 
provides continuous information about each predictor 
variable’s importance, the lasso provides only binary 
decisions about inclusion. The continuous information 
provided by SSVS is helpful because, as we did in our 
example, researchers may decide to balance parsimony 
with prediction.

Table 2. Regression Results Predicting Ratings of Unpleasantness

Predictor r

Coefficient (b) in the 
bivariate selection model 
(R2 = .459, adjusted R2 = 

.373) MIP

Coefficient (b) in the 
SSVS model (R2 = .593, 

adjusted R2 = .529)

Stressful events  
 Less worry about discrimination (EOD3) .24* 0.41 [–1.46, 2.28] .74 –1.08 [–3.04, 0.88]
 Higher global perceived discrimination (EOD4) .03 .86 –2.91* [–5.22, –0.61]
 Has not filed a discrimination complaint (EOD5) .36* –13.60* [–24.36, –2.85] .84 –15.25* [–24.66, –5.83]
Mood  
 Daydreaming frequency (IPI2) .21 0.11 [–0.14, 0.36] .35  
Pain beliefs  
 Fear of minor pain (FPQ1) .05 .72 –0.42 [–0.87, 0.03]
 Fear of medical pain (FPQ3) .23* 0.10 [–0.34, 0.54] .65  
 Belief that exposure causes illness (HIS3) .11 .93 2.55* [0.88, 4.21]
 Belief in supernatural causes of illness (HIS7) .21 2.55* [0.24, 4.87] .85 2.68* [0.61, 4.75]
Pain responses  
 Pain catastrophizing during the scan (CSQ5) .44* 0.72* [0.21, 1.23] .99 1.08* [0.71, 1.44]
 Cognitive coping during the scan (CSQ8) –.31* –0.37 [–0.82, 0.09] .57  
Pain context  
 Trust in experimenter (TVAS) –.24* –0.03 [–0.21, 0.15] .47  
Brain responses  
 Mean vmPFC activity –.15 .67 –5.13* [–8.90, –1.36]
Demographics  
 Hispanic –.28* –5.48 [–12.06, 1.11] .74 –5.48 [–11.04, 0.07]
 Black .28* –0.53 [–9.15, 8.10] .68 5.21 [–1.98, 12.40]

Note: Numbers in brackets are 95% confidence intervals. SSVS = stochastic search variable selection; vmPFC = ventromedial prefrontal 
cortex. See Table 1 for an explanation of the acronyms referring to the self-report predictors; the numbers following the acronyms are 
subscale numbers. Additional details about the measures are available in the Supplemental Material.
*p < .05.



Selecting a Subset of Predictors 11

Whereas ordinary least squares regression simply 
minimizes the sum of squared residuals (SS), the lasso 
adds an additional term (the sum of the absolute values 
of all coefficients), which penalizes coefficients to avoid 
overfitting, with the result that some coefficients are set 
to zero:

lasso SS j

j

p

= +
=
∑λ β.

1

The parameter λ controls the strength of the penalty, 
and typically an algorithm is used to obtain the λ value 
that minimizes cross-validation error. Applying this pen-
alty is called regularization, a topic we expand on in 
Box 2. Researchers have shown that SSVS outperforms 
lasso techniques in certain conditions, especially when 
many predictors are being investigated and when the 
number of predictors is larger than the sample size, 
such as in genomewide association studies (Guan & 
Stephens, 2011; Srivastava & Chen, 2009).

However, because the literature comparing Bayesian 
estimation with the lasso is sparse and disjointed, and 
to better demonstrate a comparison of SSVS with the 
lasso, here we summarize results of a simulation study, 
based on our focal example, in which we varied sample 
size (N = 75, N = 150) and the reliability of the outcome 
(perfect: α = 1; moderate: α = .8; low: α = .5). For each 
of the six conditions, we simulated 500 data sets, using 
the covariance matrix from our example as the popula-
tion generating model; correlations between the predic-
tors and outcome were adjusted to account for 
attenuated or disattenuated relationships depending on 
the reliability of the outcome. We based our design on 
the design used by Braun, Converse, and Oswald 
(2019), and our data and code for data generation and 
analysis are provided at the Open Science Framework 
(https://osf.io/m8djx/). For each replication, we 
recorded the predictors selected using lasso regression 
and SSVS with a cutoff MIP of .5. The lasso analyses 

were conducted using the cv.glmnet() function from 
the glmnet package (Friedman, Hastie, & Tibshirani, 
2010). We used 10 folds for cross-validation, following 
McNeish’s (2015) guidelines for conducting lasso analy-
ses with psychological and behavioral data.

The average number of predictors selected by each 
method is summarized in Table 3. In all conditions, the 
lasso selected more predictors than SSVS, but the pat-
tern of effects across conditions was similar. For both 
SSVS and the lasso, more predictors were selected when 
the sample size was larger and when reliability was 
higher. The predictors included by SSVS were largely 
a subset of the lasso predictors: Specifically, 91% to 99% 
of the predictors selected by the lasso were also selected 
by SSVS, whereas 17% to 43% of the predictors chosen 
by the lasso were also chosen by SSVS (see Table 3).

To inspect the stability of which predictors were 
selected, and how this was affected by sample size and 
reliability of the outcome, we plotted the proportion of 
replications in which each of the 75 predictors was 
selected (see Fig. 5). For SSVS, the concentrations near 
zero show that most predictors were selected infre-
quently; however, some predictors were selected often. 
The number of predictors that were selected frequently 
increased as sample size and reliability increased. For 
example, in the most favorable condition (i.e., perfect 
reliability and N = 150), 12 predictors were selected in 
more than 90% of replications, and 38 predictors were 
selected in fewer than 25%. By comparison, for the 
sample size of 75 and perfect reliability, only 2 predic-
tors were selected in more than 90% of the replications, 
and most predictors (59) were selected in fewer than 
25%. The corresponding plots for the lasso show that 
in the condition with perfect reliability and a sample 
size of 150, most predictors (60) were selected in more 
than 90% of the replications. With perfect reliability but 
a sample size of 75, 23 were selected in more than 90%.

Overall, our simulation supports previous work 
showing that the lasso and SSVS are related (Yuan & 

Box 2. Two Goals: Regularization and Variable Selection

There is a very important distinction between lasso regression and stochastic search variable selection (SSVS) as 
we present them here: In lasso regression, regularization (which shrinks coefficients) is usually performed in 
the same step as variable selection. Variable selection and regularization can also be performed in a single step 
in SSVS, by examining the distribution of estimates over all Markov chain Monte Carlo samples (including any 
iterations in which βj = 0). Combining regularization with variable selection has the effect of minimizing out-of-
sample prediction error. Because our goal was to demonstrate the use of variable selection to narrow down a 
set of predictors derived from theory, we chose to perform variable selection and estimation in separate steps: 
Specifically, variable selection was followed by ordinary least squares estimation to obtain model estimates. 
Therefore, our estimates were not regularized. This two-stage approach is common for applications of SSVS  
(e.g., Swartz, Kimmel, Mueller, & Amos, 2006; Swartz et al., 2013), and it can also be used for lasso regression,  
in which case it is referred to as postlasso estimation (Belloni & Chernozhukov, 2013; Efron, Hastie, Johnstone,  
& Tibshirani, 2004).

https://osf.io/m8djx/
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Lin, 2005). In the conditions studied, the lasso selected 
a larger set of predictors compared with SSVS, and 
SSVS generally selected a subset of the predictors that 
the lasso selected. Different population models are 
likely to lead to different results. In our example, the 
predictors identified from our theoretical model were 
moderately correlated. The elastic net (Zou & Hastie, 
2005) is designed to perform well when predictors are 
highly correlated, but in our experience (results not 
reported here), the elastic net results in very few pre-
dictors being selected (none, one, or two). Again, we 
believe that SSVS is useful for the type of research 
problem illustrated by our focal example because the 
continuous information about predictors’ importance 
that SSVS provides can be used for variable selection. 
The predictors chosen in our simulation were fairly 
stable across the two models, and fewer predictors 
were selected with smaller samples sizes and lower 
reliability.

Discussion and Conclusion

Variable-selection problems arise frequently in psychol-
ogy, and we have endeavored to show that SSVS is 
much more appropriate and useful than selecting pre-
dictors on the basis of the size or significance of bivari-
ate correlations. As our example demonstrates, because 
SSVS selects predictors while accounting for uncertainty 
in which other variables are included in the model, 
variables selected by this approach are more likely to 
reliably predict the outcome.

In our example of selecting a set of predictors of 
pain unpleasantness, both bivariate selection and SSVS 
resulted in models with significant predictors related 
to stressful life events (discrimination), beliefs about 

pain and illness, and responses to pain (catastrophiz-
ing). However, in addition to explaining more (13%) 
unique variance in pain unpleasantness than the bivari-
ate selection model, the SSVS model included a signifi-
cant neurobiological predictor of pain unpleasantness, 
mean activity in the vmPFC, whereas the bivariate selec-
tion model did not include any neurobiological predic-
tors. As the vmPFC has been particularly implicated in 
encoding pain unpleasantness (Price, 2000), the SSVS 
model is consistent with the pain literature and adds 
to current understanding of relationships between 
sociocultural and neurobiological mechanisms underly-
ing the affective aspects of the pain experience.

The SSVS formulation we have presented here is one 
of a large family of related Bayesian variable-selection 
approaches. This approach may become computation-
ally intractable as the number of predictors or sample 
size increases or when the predictors are highly inter-
correlated (Yuan & Lin, 2005). It will be important for 
future simulation experiments to reveal where these 
limits lie for conditions representative of psychological 
data, so that extensions can be developed. Extensions 
have already been developed in other fields for differ-
ent large-scale problems with many thousands of pre-
dictors (Fridley, 2009; Ishwaran & Rao, 2005).

Finally, although SSVS is a useful approach to vari-
able selection, providing new information about the 
relative importance of predictors, it is a data-driven 
tool. If sufficient information is available to narrow 
down the set of predictors a priori, a more theory-
driven approach should be preferred. In our example, 
all of the predictors for which data were collected made 
sense from a theoretical standpoint. This exploratory 
approach may also be especially useful for generating 
hypotheses or analyzing pilot data and then following 

Table 3. Simulation Results: Average Number of Predictors 
Selected by Stochastic Search Variable Selection (SSVS) and Lasso 
Regression and the Likelihood of a Predictor Being Selected by 
One Method Given That It Was Selected by the Other

Sample 
size and α 

Average model 
size (number 
of predictors)

If selected 
by SSVS, 

then selected 
by lasso (p)

If selected 
by lasso, 

then selected 
by SSVS (p) SSVS Lasso

N = 150  
 α = 1 28.6 66.1 .99 .43
 α = .8 13.3 52.0 .97 .25
 α = .5  5.9 34.2 .98 .18
N = 75  
 α = 1 12.9 47.7 .97 .26
 α = .8  5.9 35.4 .97 .17
 α = .5  3.3 18.2 .91 .20
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up with new primary data collection. We believe that 
the information SSVS provides is useful not for auto-
mated decision making, but for thoughtfully condens-
ing the predictor set.
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Notes

1. The terms Bayesian variable selection and SSVS can refer to 
a large family of closely related variable-selection approaches 
(e.g., Bayesian model averaging, Gibbs variable selection, 
spike-and-slab regression, reversible-jump Markov chain Monte 
Carlo methods), a full review of which is outside the scope 
of this article. The formulation presented here is commonly 
used and compares favorably with alternative formulations (see 
Lahiri, 2001; O’Hara & Sillanpää, 2009).
2. Note that methods for assessing variables’ importance are 
used both for variable selection and for determining the rela-
tive importance of the predictors within a given model. In this 

article, we focus on variable selection, but see Grömping (2015) 
for a recent review of metrics for assessing variables’ impor-
tance within a given model.
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