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Abstract 24 

The relationship between pain and cognition has primarily been investigated in patients with 25 

chronic pain and healthy participants undergoing experimental pain. Recently, there has been 26 

interest in understanding the disruptive effects of non-experimental pain in otherwise healthy 27 

individuals. Recent studies suggest that healthy individuals reporting pain also demonstrate 28 

decrements in working memory (WM) performance, however factors contributing to this 29 

relationship remain poorly understood. The present study examined the association between 30 

everyday pain and WM in a large community-based sample of healthy individuals and 31 

investigated whether self-reported affective distress and medial frontal cortex activity might help 32 

to explain this relationship. To address these research questions, a large publicly available 33 

dataset from the Human Connectome Project (N = 416) was sourced and structural equation 34 

modeling was utilized to examine relationships between pain intensity experienced over the past 35 

7 days, self-reported affective distress (composite measure), performance on a WM (n-back) 36 

task, and task-related activation in the medial frontal cortex. Examining participants who 37 

reported non-zero pain intensity in the last 7 days (n = 228), we found a direct negative 38 

association between pain intensity and performance on the WM n-back task, consistent with 39 

prior findings. Self-reported affective distress was not associated with WM performance. 40 

Additionally, pain intensity was indirectly associated with WM performance via WM task-41 

related activity in the ventromedial prefrontal cortex (vmPFC). Our findings suggest that 42 

everyday pain experienced outside of the laboratory by otherwise healthy individuals may 43 

directly impact WM performance. Furthermore, WM task-related increases in vmPFC activity 44 

may be a factor contributing to this relationship.  45 

Key Words: pain intensity; vmPFC; n-back task; affective distress  46 
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1. Introduction 47 

 Pain is a common experience known to interfere with cognition. Pain-related deficits in 48 

executive function and working memory (WM), or the process of maintaining and manipulating 49 

information over short periods of time (Baddeley, 1992; Cowan, 2017), have been demonstrated 50 

in non-human animals (Boyette-Davis et al., 2008; Braithwaite and Droege, 2016; Glass, 2009; 51 

Hayes et al., 1981), patients with chronic pain (Baker et al., 2016; Berryman et al., 2013; Dick et 52 

al., 2008; Glass and Park, 2001), and healthy volunteers undergoing experimental pain induction 53 

(Houlihan et al., 2004; Legrain et al., 2009; Mylius et al., 2012; Seminowicz and Davis, 2007). 54 

More recently, there has been interest in understanding the relationship between pain and 55 

cognition outside of the laboratory setting. Very little is known about the impact of naturalistic 56 

pain experiences on the cognition and behavior of otherwise healthy individuals, yet these 57 

insights may be more generalizable, and thus may have wider implications for understanding 58 

human behavior than those found in the laboratory (Eccleston, 2013).   59 

A recent online study of healthy individuals found that self-reported pain due to common 60 

conditions such as backache and arthritis was associated with worse performance on the widely 61 

used n-back task of WM (Attridge et al., 2015). These findings suggest that pain experienced 62 

outside of the laboratory is related to WM performance, although the potential neural and 63 

psychological mechanisms contributing to this relationship remain poorly understood. Prior 64 

clinical research conducted with chronic pain patients as well as experimental research 65 

conducted with healthy samples points to the potential roles of affective distress and medial 66 

frontal cortex activation in the relationship between pain intensity and WM capacity. The current 67 

research examines the relationship between non-experimental pain and WM in otherwise healthy 68 
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individuals, and explores whether affective distress and activation of specific regions within the 69 

medial frontal cortex are associated with pain and deficits in WM. 70 

1.1. Pain, affective distress, and working memory deficits 71 

Affective distress is a core component of the experience of pain (Edwards et al., 2016; 72 

Rainville et al., 2005; Rhudy and Meagher, 2001, 2003; Wiech and Tracey, 2009). The 73 

experience of pain is often (although not always, see Leknes and Tracey, 2008, for a review) 74 

associated with feelings of distress including fear, anger, anxiety, and stress (Price, 2000; Taal 75 

and Faber, 1997; Vowles et al., 2004). In turn, the experience of pain-related distress is 76 

associated with greater attention to pain, difficulty disengaging attention from pain, reduced 77 

attentional control, and poorer WM capacity (Crombez et al., 1999; Eccleston, 1994; Eccleston 78 

et al., 1997; Keogh et al., 2013). Independent of the experience of pain, affective distress has 79 

been shown to interfere with WM capacity by disrupting attentional control, for example in the 80 

recollection of negative biographical memories (Allen et al., 2014), word recall and semantic 81 

processing (Ellis et al., 1984), and conflict-driven executive control (Padmala et al., 2011). 82 

1.2. Shared neural underpinnings of pain, affective distress, and working memory deficits 83 

Activity in brain regions associated with pain-related distress are also implicated in 84 

cognitive control, specifically the dorsal medial frontal cortex (dMFC), anterior midcingulate 85 

cortex (aMCC), and ventromedial prefrontal cortex (vmPFC). For example, in a study of healthy 86 

individuals receiving experimentally induced pain, higher levels of pain catastrophizing 87 

(distressing cognitions about pain) were associated with increased activity in the insular cortex 88 

and anterior cingulate cortex (ACC) (Seminowicz and Davis, 2006), brain regions previously 89 

implicated in the negative emotional component of pain (Woo et al., 2015). The ACC and other 90 

medial structures have been theorized to mediate the effects of pain-related distress on cognitive 91 
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impairment in patients with chronic pain (Hart et al., 2003). Pain-related activity in the aMCC 92 

has been found to mediate the relationship between acute stress-related physiological responding 93 

and pain unpleasantness in chronic back pain patients (Vachon-Presseau et al., 2013). Speaking 94 

to the central role of this brain region in pain, affective distress, and cognitive control, in a 95 

review of neuroimaging studies of healthy individuals, Shackman et al. (2011) identified 96 

overlapping regions of the aMCC involved in all three processes.  97 

The vmPFC has been implicated in both the affective component of pain as well as the 98 

disruptive effects of pain on executive function. At a broad level, the vmPFC is hypothesized to 99 

be involved in attention to emotion (Pessoa et al., 2002) and assigning affective meaning to a 100 

range of processes including pain (Roy et al., 2012). With regards to pain, although vmPFC 101 

activity is associated with decreased pain in healthy individuals receiving experimentally 102 

induced pain (Atlas et al., 2014), it is associated with increased pain in individuals with chronic 103 

pain (Apkarian et al., 2011). Furthermore, there is evidence implicating the vmPFC and broader 104 

medial frontal cortex in the transition from acute to chronic pain, specifically via altered 105 

functional connectivity with emotion and reward circuitry (Baliki et al., 2012; Hashmi et al., 106 

2013). The vmPFC is a key node of the default mode network (DMN), a collection of 107 

functionally connected frontal and parietal regions whose activity reliably characterizes the brain 108 

“at rest” (Uddin, 2015; Uddin et al., 2009), and which is strongly implicated in mind wandering 109 

(Christoff et al., 2009). Hence, the DMN is typically (although not always, see Spreng, 2012) de-110 

activated during cognitive tasks requiring attentional control (Anticevic et al., 2012). In patients 111 

with chronic pain, however, there is evidence of attenuated deactivation of the DMN during tasks 112 

of attentional control (Baliki et al., 2008), in addition to a broad reorganization of the DMN at 113 

rest (Baliki et al., 2014).  114 
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Given that multiple regions of the medial frontal cortex have been implicated in pain, 115 

affective distress, and cognitive control, Kragel et al. (2018) utilized multivariate patterns of 116 

brain activity across multiple studies to identify domain-specific and generalizable 117 

representations. Their results speak to the structural and functional proximity of pain, affective 118 

distress, and cognitive control representations in the brain, and provide a basis for examining 119 

medial frontal cortex activity as a factor involved in all three processes. 120 

1.3. Overview of the current research 121 

 Following prior research (Attridge et al, 2015), the current study examined whether pain 122 

experienced outside of the laboratory in otherwise healthy individuals was associated with worse 123 

WM as indicated by performance on the n-back task, investigated the role of affective distress in 124 

the relationship between pain and WM, and explored the shared neurobiological underpinnings 125 

of pain, affective distress, and deficits in WM performance. We utilized the large and publicly 126 

available Human Connectome Project (HCP) dataset in order to model the relationship between 127 

pain experienced over the past 7 days, affective distress, WM, and WM task-related brain 128 

activation in the dMFC, aMCC, and vmPFC. We hypothesized that pain report would be directly 129 

associated with worse WM task performance, and that pain report would be indirectly associated 130 

with WM task performance via contributing factors related to self-reported affective distress and 131 

WM task-related brain activity. 132 

2.    Methods 133 

2.1. Participants 134 

Data used in the preparation of the analyses described herein were obtained from the 135 

1200 subject release of the MGH-USC Human Connectome Project (HCP) database. The goal of 136 

the HCP was to recruit healthy participants across a broad spectrum with respect to behavioral, 137 
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ethnic, and socioeconomic diversity (Van Essen et al., 2012). We aimed to maximize our study 138 

sample size within the constraints of using the previously collected HCP data, namely by using 139 

the largest HCP data release to date (the 1200 subject data release), and selecting within that data 140 

release one subject from each family, resulting in a sample of 416 unrelated, healthy, right-141 

handed subjects (216 female, Mage = 28.59, SD = 3.72). As the stated aim of our study was to 142 

examine the effect of pain in otherwise healthy individuals on working memory task 143 

performance, we further restricted our sample for structural equation modeling analyses to the 144 

228 individuals who reported experiencing > 0 pain intensity in the past 7 days. 145 

 Inclusion criteria for HCP participants were age 22-35 at time of phone screening and 146 

ability to give valid informed consent. HCP participants were excluded if they had significant 147 

history of psychiatric disorder, substance abuse, neurological or cardiovascular disease, which 148 

included participant report of a diagnosis, hospitalization lasting two days or longer, or current 149 

pharmacologic or behavioral treatment for a period of 12 months or longer. Additional exclusion 150 

criteria included history of seizures/epilepsy, any genetic disorder, multiple sclerosis, cerebral 151 

palsy, brain tumor or stroke, history of head injury, premature birth, current or past history of 152 

chemotherapy or radiation, thyroid treatment, diabetes treatment, or the use of daily prescription 153 

medications for migraines in the past month. Full inclusion and exclusion criteria are described 154 

in Van Essen et al. (2013).  155 

Participant data were collected at Washington University over the course of a 2-day visit. 156 

NIH Toolbox Behavioral Tests were conducted on Day 1, along with resting state and task fMRI 157 

scan session #1. Non-NIH Toolbox Behavioral Tests and a second session of resting state and 158 

task fMRI scanning was conducted on Day 2. All participants provided informed consent during 159 

the first day of testing procedures. Data analysis and research procedures for the present study 160 
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were approved by the Institutional Review Board (IRB) at the University of Miami. HCP 161 

research protocols and data collection procedures were approved by the HCP-affiliated 162 

university review boards.  163 

2.2. Measures 164 

2.2.1. Pain. Pain ratings were made by participants as part of a battery of behavioral 165 

assessments on the first day of the 2-day HCP study visit. As the primary predictor in our 166 

models, we examined participant ratings of pain intensity using the National Institutes of Health 167 

(NIH) Toolbox Pain Intensity Survey (Cook et al., 2013). Participants’ level of pain intensity 168 

experienced over the past 7 days was assessed with a single item, 0-10 numeric rating scale (0 = 169 

“No pain”, 10 = “Worst imaginable pain”). The Pain Intensity Survey was repeated for 20 170 

participants in the final sample due to test-retest validation by HCP, the results of which are 171 

outside the scope of the present study. As a result, we chose to retain only the first score 172 

(corresponding to the original study session visit) for each affected participant. To ensure that the 173 

results of our analyses reflected only those individuals who reported being in pain in the last 7 174 

days, we included only subjects who reported > 0 pain intensity (n = 228) in subsequent 175 

analyses. To further characterize participants who reported non-zero pain intensity, we examined 176 

two additional measures of pain, pain interference and sleep disruption due to pain. 177 

 Pain interference was measured using a computerized adaptive test (CAT) as part of the 178 

NIH Patient-Reported Outcomes Measurement Information System (PROMIS) (Cella et al., 179 

2010; Rothrock et al., 2010). Participants were instructed to report the degree to which pain 180 

interfered with their social, cognitive, emotional, physical, and recreational activities in the past 181 

seven days. The NIH PROMIS pain interference assessment also contains items about sleep 182 

quality and life enjoyment. Each item was assessed on a 5-point scale ranging from “not at all” to 183 
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“very much.” In addition, we included a single item from the Pittsburgh Sleep Quality Index 184 

(PSQI) (Buysse et al., 1989) assessing sleep disruption due to pain. The PSQI assesses different 185 

aspects of sleep and sleep quality. The item assessing pain asks, “During the past month, how 186 

often have you had trouble sleeping because you…Have Pain?” Participants are asked to respond 187 

on a scale from 0 = “Not during the past month,” 1 = “Less than once a week,” 2 = “Once or 188 

twice a week,” or 3 = “Three or more times per week.”  189 

 2.2.2. Working memory (WM). Participants completed a WM n-back task (Owen et al., 190 

2005) as part of the fMRI cognitive performance battery (for more details of the overall battery 191 

see Barch et al., 2013). The task was presented in the fMRI scanner and consisted of two runs of 192 

8 task blocks (10 trials each) and 4 fixation blocks each. Participants viewed 4 stimulus category 193 

types (places, tools, faces, body parts), where each stimulus category was presented in separate 194 

blocks within the run. Half of the blocks presented to subjects in each run tested WM using a 2-195 

back load level. Participants were instructed to respond when the current stimulus matched that 196 

which appeared two trials prior. The other half of the blocks consisted of a control 0-back load 197 

level, where participants were instructed to respond when a trial stimulus matched a target cue 198 

presented at the start of the block. After a 2.5 second cue at the start of each block indicating the 199 

task type (and target if a 0-back block), participants viewed each picture for 2 seconds, with 200 

picture stimuli separated by a 500 millisecond inter-trial interval (ITI). Within each block, 2 201 

trials were designated targets and 2-3 trials were designated non-target “lures,” or targets 202 

appearing in the incorrect n-back position. The entire task took approximately 10 minutes to 203 

complete. Each participant’s average accuracy score across all stimulus category types in the 2-204 

back condition was used as the behavioral measure of WM. 205 
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 In addition to the n-back task, HCP participants also completed the List Sorting Task 206 

(Tulsky et al., 2014) during the NIH Toolbox behavioral testing session. The List Sorting Task 207 

assessed WM through the presentation of sequences of visually and orally presented stimuli. 208 

Participants were asked to sort the sequences of stimuli by various characteristics of the stimuli. 209 

Higher scores indicated higher levels of WM. We examined the age-adjusted List Sorting score, 210 

which is normed using the age appropriate band of the NIH Toolbox norming sample (bands of 211 

ages 18-29, or 30-35). A List Sorting score of 100 indicates a score that is the national average, 212 

while a score of 85 indicates a score that is 1 standard deviation below the national average for 213 

that participant’s age band.  214 

 2.2.3. Self-reported affective distress. The HCP includes several behavioral measures 215 

categorized as “Negative Affect,” specifically Anger-Affect, Anger-Hostility, Anger-Physical 216 

Aggression, Fear-Affect, Fear-Somatic Arousal, and Sadness. In addition, there are several 217 

measures of related constructs, including social distress and perceived stress (Loneliness, 218 

Perceived Stress, Perceived Rejection), that have been previously identified as associated with 219 

pain perception and cognitive performance (Bushnell et al., 2013; Hart et al., 2003; Shackman et 220 

al., 2011; Villemure and Bushnell, 2002). Measures used for analyses in the present study 221 

include Anger-Affect, Fear-Affect, Sadness, and Perceived Stress. The Anger-Affect Survey is a 222 

CAT administered measure comprising items from the PROMIS Anger Item bank that assess 223 

anger as an affective experience over the past 7 days (Pilkonis et al., 2013). The Fear-Affect 224 

survey was administered from items compiled from the PROMIS Anxiety Item Bank and assess 225 

self-reported fear and anxious misery over the past 7 days (Pilkonis et al., 2013). The Sadness 226 

Survey is a CAT administered measure of sadness in respondents over the past 7 days. The 227 

Perceived Stress Survey is a CAT administered measure of how unpredictable, uncontrollable 228 
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and overloaded participants feel about their lives over the past month (Kupst et al., 2015). All 229 

surveys were scored such that higher scores indicate higher levels of the construct (e.g., anger).  230 

2.3. Data analytic technique 231 

2.3.1. Self-reported affective distress. Because there were a number of potential self-232 

report measures included in the HCP dataset pertaining to affective distress, we used a data-233 

driven approach to identify a positively correlated cluster of measures that we then included as 234 

indicators for a latent construct using confirmatory factor analysis (CFA). We conducted Pearson 235 

correlation analyses using R Version 3.5.2 in order to choose the indicators for our latent 236 

construct. To aid in the identification of correlated measures, we used the Ward error sum of 237 

squares hierarchical clustering method (Murtagh and Legendre, 2014) as implemented in the 238 

corrplot R package (Wei and Simko, 2016). The following NIH Toolbox measures comprising 239 

the largest significantly correlated hierarchical cluster were chosen as the final indicators for the 240 

affective distress latent construct: Anger-Affect Survey, Perceived Stress Survey, Sadness 241 

Survey, and Fear-Affect Survey (Fig. 1a). Because the latent construct has no natural metric, we 242 

fixed the loading for the Anger-Affect indicator to 1 to provide a metric for the latent construct. 243 

2.3.2. fMRI data preprocessing. A minimal-preprocessing pipeline for the surface-244 

based HCP structural and functional data was used (Glasser et al., 2013) that included artifact 245 

removal, head motion correction using FSL’s MCFLIRT (Jenkinson et al., 2002), segmentation, 246 

and registration to standard MNI-space. Surface-based activation maps were derived from task-247 

fMRI data collected on a 3T Siemens Skyra scanner with a 32-channel head coil (TR = 720 ms, 248 

TE = 33.1 ms, flip angle =   52 ̊, FOV = 208mm × 180mm, matrix size = 104 × 90, 72 slices, 249 

2mm isotropic voxels). Each subject’s volume scans in MNI-space were mapped to CIFTI 250 

“grayordinate” standard space (32k Conte69 mesh) using a cortical ribbon-based volume to 251 
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surface mapping. A 2mm FWHM surface-based smoothing kernel was applied using a geodesic 252 

Gaussian algorithm. Subsequent preprocessing included extra surface-based smoothing using a 253 

geodesic Gaussian algorithm with 4mm FWHM. Computation of surface-based activation maps 254 

for each subject was performed using a standard general linear model (GLM) analysis using 255 

FSL’s FILM (FMRIB’s Improved Linear Model) with autocorrelation correction (Woolrich et 256 

al., 2001). Task-condition regressors were constructed by convolution with a canonical 257 

hemodynamic response function (HRF; Glover, 1999). Temporal derivatives of each convolved 258 

regressor were included in the GLM to account for timing differences but estimates for these 259 

terms were not used further analysis. A ‘2-back > 0-back’ contrast was used to isolate increases 260 

in 2-back task-related brain activity.  261 

 2.3.3. 2-back task-related brain activity. Following conventions for best-practices in 262 

selecting ROIs for analysis (Poldrack, 2007), 2-back task-related brain activity was taken from 263 

regions-of-interest (ROIs) chosen a priori due to their prior implication in pain, affective 264 

distress, and cognitive control (Hashmi et al., 2013; Kragel et al., 2018; Woo et al., 2015). The 265 

ROIs selected as potential factors underlying the relationship between pain and WM task 266 

performance were the anterior midcingulate cortex (aMCC), dorsal medial frontal cortex 267 

(dMFC), and ventromedial prefrontal cortex (vmPFC). Because HCP fMRI data is in surface file 268 

format (CIFTI), we utilized a surface-based resting state functional connectivity-derived 269 

parcellation of cortical areas (Gordon et al., 2016) to define each ROI. In order to create surface-270 

based ROIs that were comparable to those identified in prior studies implicating the MFC in 271 

pain, affective distress, and cognitive control (Kragel et al., 2018), individual parcels were 272 

combined to create each of the final ROIs used in our analyses. Mean parameter estimates from a 273 
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contrast of 2-back task-related brain activity (2-back vs. 0-back) were extracted for each 274 

participant in each ROI for inclusion in structural equation models.  275 

 2.3.4. Structural equation modeling (SEM). Pain intensity was examined in a structural 276 

equation model predicting 2-back task accuracy. To build the model, we first fit a measurement 277 

model testing self-reported affective distress (composite measure). We then fit a structural 278 

equation model testing the direct association between pain intensity and 2-back task accuracy, 279 

with self-reported affective distress (composite measure) included as an additional factor that we 280 

hypothesized might be involved in an indirect relationship between pain and WM. Finally, we 281 

tested a model where we added brain activity from the three 2-back task-related ROIs. At each 282 

step, model fit was evaluated using previously recommended criteria (Hooper et al., 2008) for 283 

the following indices: χ2 (chi-square) test (acceptable if χ2 p-value > .05), the Root Mean Square 284 

Error Approximation (RMSEA, acceptable if ≤ .08), the Comparative Fit Index (CFI, acceptable 285 

if ≥ .95), and the Standardized Root Mean Square Residual (SRMR, acceptable if ≤.08).  286 

 We specified paths from pain intensity to 2-back task accuracy via affective distress and 287 

each of our task-related ROIs, as we hypothesized that participants’ self-reported affective 288 

distress could influence the strength of task-related brain activity and therefore be negatively 289 

associated with WM. The proposed structural equation model, with hypothesized direct and 290 

indirect associations, can be viewed in Fig. 2. 291 

 Although there are known age-related deficits in WM task performance (West, 1999), age 292 

was not included in the model because our sample was relatively young with a small standard 293 

deviation (M = 28.7, SD = 3.78, range: 22-36), and a prior study (Attridge et al., 2015) found no 294 

evidence for an age × pain interaction on n-back task performance using a similarly aged subject 295 

population. The zero-order correlation between age and pain intensity in our sample was not 296 
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significant, r = .003, t(226) = 0.04, p = .968, nor was the correlation between age and WM task 297 

performance, r = -.099, t(223) = -1.49, p = .138. Finally, when available we used age-adjusted 298 

variables included in the HCP dataset.  299 

 2.3.5. Model assumptions. Analyses were conducted using R Version 3.5.2 and RStudio 300 

Version 1.1.463 (R Studio Team, 2016). Measurement and structural equation models were 301 

specified using the lavaan package in R (Rosseel, 2012). Because Shapiro-Wilk tests revealed 302 

evidence of non-normality in several of our model variables (specifically the 2-back task 303 

accuracy dependent variable, pain intensity predictor variable, NIH Toolbox Anger-Affect 304 

Survey, and NIH Toolbox Fear-Affect Survey), we employed robust maximum likelihood 305 

(MLR) estimation for all models. MLR adjusts model fit indices and utilizes the Huber-White 306 

“sandwich” estimator to correct inflated standard errors due to kurtosis and non-normality 307 

(Huber, 1967). No predictors in our model had a variance inflation factor (VIF) greater than 3, 308 

suggesting no problematic multicollinearity in our structural equation models. 309 

 2.3.6. Outliers. Examination of the dependent task performance variable for univariate 310 

outliers revealed one observation that was greater than 3 standard deviations below the mean 311 

accuracy score. However, because the dependent variable had acceptable levels of skewness and 312 

kurtosis (skewness = -0.77, kurtosis = 3.16) based on previously published guidelines (skewness 313 

< 2 and kurtosis < 7; Ryu, 2011), we opted to retain all observations. Examining the pain 314 

intensity predictor revealed four univariate outliers. However, because this variable also had 315 

acceptable levels of skewness and kurtosis (skewness = 1.59, kurtosis = 5.36), we retained all 316 

observations. Additionally, checking for multivariate outliers using Cook’s Distance (Cook, 317 

1977) did not reveal any influential outliers.   318 
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 2.3.7. Missing data. The 2-back task accuracy dependent variable had 3 missing values. 319 

Missing values were removed with listwise deletion in structural equation models.  320 

 321 

 322 

Figure 1. Pearson correlation matrices of HCP variables of interest in the current study in 323 

participants who reported > 0 pain intensity in the last 7 days. Positive correlations are 324 

represented with blue backgrounds; negative correlations are represented with red backgrounds. 325 

The intensity of the color in each cell is proportional to the strength of the correlation coefficient. 326 

The p-values within each matrix were adjusted for multiple comparisons using false discovery 327 

rate (FDR) correction. Cells with white backgrounds had FDR-corrected p-values > .05. Black 328 

outlines indicate hierarchical clustering of correlated variables using the Ward criterion. (a) 329 

Relationships between HCP measures of self-reported affective distress. The largest cluster, 330 

comprising the NIH Toolbox Perceived Stress Survey, Anger-Affect Survey, Sadness Survey, 331 
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and Fear-Affect Survey were chosen as the indicators for the self-reported affective distress 332 

latent construct; (b) Relationships between measures of interest related to pain, affective distress, 333 

and working memory task performance. (c) Scatter plots demonstrating the correlations reported 334 

in (b), including between pain intensity in the past 7 days and working memory measures, pain 335 

intensity in the past 7 days and other Human Connectome Project (HCP) measures of pain, 336 

correlations between pain intensity in the past 7 days and measures of affective distress, and 337 

correlations between 2-back task performance and 2-back task-related activation in a priori 338 

ROIs. Note. * p < .05, ** p < .001. 339 

 340 

Figure. 2. Proposed structural equation model (SEM) testing the association between pain 341 

intensity and 2-back task accuracy. Different colors denote the indirect paths that were tested. 342 

Note: dMFC = dorsal medial frontal cortex; aMCC = anterior midcingulate cortex; vmPFC = 343 

ventromedial prefrontal cortex; Anger = NIH Toolbox Anger-Affect Survey; Fear = NIH 344 

Toolbox Fear-Affect Survey; Stress = NIH Toolbox Perceived Stress Survey; Sadness = NIH 345 

Toolbox Sadness Survey. 346 
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3. Results 347 

3.1. Descriptive statistics 348 

 Sample characteristics for the final sample (n = 228) can be viewed in Table 1. 349 

Descriptive statistics for all measures included in the present study can be viewed in Table 2. 350 

 351 

Table 1. Sample characteristics. 352 

 n = 228 

Age  

Mean (SD) 28.7 (3.78) 

Median [Min, Max] 28.0 [22.0, 36.0] 

Race  

Am. Indian/Alaskan Nat. 0 (0%) 

Asian/Nat. Hawaiian/Other 
Pacific Is. 

10 (4.4%) 

Black or African Am. 34 (14.9%) 

More than one 5 (2.2%) 

Unknown or Not Reported 6 (2.6%) 

White 173 (75.9%) 

Ethnicity  

Hispanic/Latino 23 (10.1%) 

Not Hispanic/Latino 203 (89.0%) 

Unknown or Not Reported 2 (0.9%) 

Gender  

Female 108 (47.4%) 

Male 120 (52.6%) 

 353 

Table 2. Descriptive statistics for measures included in structural equation models. 354 

 Mean (SD) Skewness Kurtosis 
Pain Intensity 2.41 (1.76) 1.59 5.36 
2-back Task Accuracy 83.5 (9.87) -0.77 3.16 
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NIH Toolbox Anger-Affect  49.3 (8.48) 0.35 4.55 
NIH Toolbox Perceived Stress  49.6 (8.68) 0.21 3.76 
NIH Toolbox Sadness  47.6 (7.84) 0.65 4.13 
NIH Toolbox Fear-Affect  51.3 (8.10) 0.29 4.43 
aMCC Activity during 2-back Task -0.011 (1.03) -0.18 3.14 
dMFC Activity during 2-back Task 0.398 (1.02) -0.25 3.61 
vmPFC Activity during 2-back Task -0.684 (1.03) -0.03 3.20 
 355 

 356 

3.2. Zero-order correlations between pain, task-related brain activity, and 2-back task 357 

accuracy 358 

Regarding the frequency of pain experience, 55% (228/416) of participants reported 359 

experiencing pain in the last 7 days. To understand the relationship between pain intensity and 360 

other variables of interest, we first examined zero-order correlations between variables of interest 361 

among the participants who reported non-zero pain intensity in the last 7 days (Fig. 1b; scatter 362 

plots depicted in Fig. 1c). Increased pain intensity was significantly associated with increases in 363 

the other measures of pain in the HCP dataset, namely pain interference, r = .55, pcorrected < .001, 364 

95% CI[.46, .64], and the frequency of pain interfering with sleep (PSQI – Sleep Item), r = .34, 365 

pcorrected < .001, 95% CI[.22, .45]. Increased pain intensity was also significantly associated with 366 

increased self-reported anger, r = .24, pcorrected < .001, 95% CI[.12, .36], fear, r = .26, pcorrected < 367 

.001, 95% CI[.13, .38], perceived stress, r = .25, pcorrected < .001, 95% CI[.12, .37], and sadness, r 368 

= .19, pcorrected = .01, 95% CI[.06, .31].  369 

To test whether the 2-back task was assessing WM as we hypothesized, we examined the 370 

relationship between participants’ 2-back task performance and performance on the other HCP 371 

measure of WM, the List Sorting task. As predicted, higher 2-back task accuracy (% correct) was 372 

significantly associated with higher List Sorting scores, r = .35, pcorrected < .001, 95% CI[.23, 373 

.46]. 374 
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Supporting the hypothesized relationships between our measures of interest, we found 375 

that increased pain intensity was significantly associated with lower accuracy on the 2-back task, 376 

r = -.28, pcorrected < .001, 95% CI[-.39, -.15]. Increased task-related activity in the vmPFC was, in 377 

turn, significantly associated with lower 2-back task accuracy, r = -.25, pcorrected < .001, 95% CI[-378 

.37, -.12]. However, 2-back task performance was not associated with task-related activity in the 379 

aMCC, r = -.01, pcorrected = .886, 95% CI[-.14, .12], or dMFC, r = .09, pcorrected = .289, 95% CI[-380 

.04, .22].  381 

 Together, our zero-order correlation findings indicate that individuals who reported non-382 

zero pain intensity in the past 7 days also reported some degree of pain interference and sleep 383 

disruption due to pain, supporting the validity of the pain intensity measure as a general indicator 384 

of everyday pain. Supporting the validity of the 2-back task as a measure of WM, better 2-back 385 

task performance was significantly associated with better performance on the WM List Sorting 386 

task. Supporting our hypothesized relationships between our measures of interest, namely that 387 

pain intensity would be directly and indirectly associated with worse working memory task 388 

performance, we found that increased pain intensity and 2-back task-related activity in the 389 

vmPFC were both associated with worse 2-back task performance.  390 

3.3. Increased pain intensity directly and indirectly associated with lower 2-back task 391 

accuracy in structural equation models. 392 

The single factor measurement model of self-reported affective distress was identified 393 

and fit the data, χ2(2, N = 228) = 2.39, p = .300; CFI = 0.99, RMSEA = 0.03, SRMR = 0.01. All 394 

indicator loadings were significant (p < .001).  395 

 Next, we fit a structural model with a direct path from pain intensity to 2-back task 396 

accuracy and an indirect path via the self-reported affective distress latent construct. The 397 
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structural model was identified and fit the data, χ
2(8, N=225) = 9.51, p = .302; CFI = 1.00, 398 

RMSEA = 0.029, SRMR = 0.02. Increased pain intensity was directly associated with lower 2-399 

back task accuracy, b = -1.43, SEb = 0.41, p = .001. Increased pain intensity was also associated 400 

with increased self-reported affective distress, b = 1.05, SEb = 0.35, p = .002. However, self-401 

reported affective distress was not associated with 2-back accuracy, b = -0.12, SEb = 0.101, p = 402 

.242, and the indirect effect of pain intensity on 2-back task accuracy was not significant, b = -403 

0.12, SEb = 0.11, p = .268. The total relationship between pain intensity and 2-back task accuracy 404 

was significant, b = -1.55, SEb = 0.39, p < .001. 405 

 We then added to the structural equation model the three ROIs of 2-back task-related 406 

activity (Fig. 3). We found that the structural model was identified and fit the data, χ2(17, 407 

N=225) = 12.95, p = .740; CFI = 1.00, RMSEA = 0.00, SRMR = 0.016. In this model, increased 408 

pain intensity was again directly associated with lower 2-back task accuracy, b = -1.26, SEb = 409 

0.39, p = .001, and with increased self-reported affective distress, b = 1.05, SEb = 0.35, p = .002. 410 

Additionally, increased pain intensity was associated with increased task-related activity in the 411 

vmPFC, b = 0.11, SEb = 0.04, p = .007. Increased vmPFC activity was in turn associated with 412 

lower 2-back task accuracy, b = -1.95, SEb = 0.55, p < .001. Increased self-reported affective 413 

distress was significantly associated with lower task-related dMFC activity, b = -0.03, SEb = 414 

0.01, p = .034. 415 

 Testing indirect associations, we found a significant indirect association between pain 416 

intensity and 2-back task accuracy via task-related activity in the vmPFC, b = -0.22, SEb = 0.10, 417 

p = .023. That is, increased pain intensity was associated with increased task-related activity in 418 

the vmPFC, which was in turn associated with lower 2-back task accuracy. The total relationship 419 

between pain intensity and 2-back task accuracy was significant, b = -1.43, SEb = 0.41, p = .001. 420 
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In contrast, none of the other tested indirect associations between pain intensity and 2-back task 421 

accuracy were significant (all p-value’s > .200). Full results from this model are available in 422 

Table 3. 423 

 To investigate whether the observed significant indirect association was due to other 424 

variables in our model, we specified a simplified model including only pain intensity, 2-back 425 

task-related vmPFC activity, and 2-back task accuracy. The indirect association between pain 426 

intensity and 2-back task accuracy via vmPFC activity remained significant in this simplified 427 

model, b = -0.19, SEb = 0.08, p = .020, suggesting that the indirect association we observed in 428 

our full model was not merely due to the presence of other variables. 429 

3.4. Participants reporting non-zero pain demonstrated attenuated vmPFC deactivation, 430 

but not lower 2-back task accuracy, compared to participants reporting zero pain 431 

 To further characterize the significant relationships observed in our final structural 432 

equation model, we compared participants who reported non-zero pain in the past 7 days to 433 

participants who reported zero pain in the past 7 days. Given prior findings that patients with 434 

chronic pain have worse WM task performance (see Berryman et al., 2013, for a review) and 435 

attenuated task-related deactivation of the default mode network (DMN) compared to healthy 436 

controls (Baliki et al., 2008), we conducted independent samples t-tests on measures of WM task 437 

performance and WM task-related activity in the vmPFC. WM task performance as measured by 438 

2-back task accuracy did not significantly differ between the two groups, t(373.26) = 0.22, p = 439 

.828, 95% CI[-1.83, 2.29]. However, participants who reported non-zero pain (n = 228) in our 440 

sample had significantly greater 2-back task-related vmPFC activity than participants who 441 

reported zero pain (n = 186), t(401.31) = 2.36, p = .019, 95% CI[0.04, 0.47]. 442 
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These findings suggest some similarity, at least in terms of 2-back task-related brain 443 

activity, between the healthy participants who reported non-zero pain in our sample and patients 444 

with chronic pain investigated in prior studies. 445 

   446 

 447 
 448 
 449 
Figure. 3. Results of structural equation model testing the association between pain intensity and 450 

2-back task accuracy. For display purposes, only significant (p < .05) paths are shown. Increased 451 

pain intensity was directly associated with lower 2-back task accuracy. In addition, increased 452 

pain intensity was indirectly associated with lower 2-back task accuracy via increased 2-back 453 

task-related activity in the vmPFC. Note: aMCC = anterior midcingulate cortex; dMFC = dorsal 454 

medial frontal cortex; vmPFC = ventromedial prefrontal cortex; Anger = NIH Toolbox Anger-455 

Affect Survey; Fear = NIH Toolbox Fear-Affect Survey; Stress = NIH Toolbox Perceived Stress 456 

Survey; Sadness = NIH Toolbox Sadness Survey. Note. * p < .05, ** p < .01, ** p < .001. 457 

 458 
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Table 3. Results of structural equation model predicting 2-Back Accuracy. 459 

 Estimate SE z p 

 Factor Loadings 
Self-Reported Affective Distress     
Anger 1.00+    
Stress 1.02*** 0.11 9.01 .000 
Sadness 1.02*** 0.09 11.62 .000 
Fear 1.04*** 0.09 12.11 .000 
 Regression Slopes 
2-back Task Accuracy     
Pain Intensity -1.26** 0.38 -3.28 .001 
aMCC Activity during 2-back 0.20 0.65 0.31 .754 
dMFC Activity during 2-back 0.82 0.51 1.61 .108 
vmPFC Activity during 2-back -1.95*** 0.55 -3.56 .000 
Self-Reported Negative Affect -0.11 0.10 -1.05 .293 
aMCC Activity during 2-back     
Pain Intensity 0.06 0.04 1.45 .148 
Self-Reported Affective Distress -0.01 0.01 -0.64 .525 
dMFC Activity during 2-back     
Pain Intensity 0.05 0.04 1.20 .230 
Self-Reported Affective Distress -0.03* 0.01 -2.11 .034 
vmPFC Activity during 2-back     
Pain Intensity 0.11** 0.04 2.67 .007 
Self-Reported Affective Distress -0.01 0.01 -0.45 .651 
Self-Reported Affective Distress     
Pain Intensity 1.05** 0.35 3.03 .002 
 Residual Variances 
Anger 27.62*** 3.97 6.96 .000 
Stress 28.98*** 3.73 7.76 .000 
Sadness 15.79*** 2.79 5.65 .000 
Fear 17.68*** 2.27 7.78 .000 
2-back Task Accuracy 83.58*** 7.74 10.80 .000 
aMCC Activity during 2-back 1.06*** 0.10 10.30 .000 
dMFC Activity during 2-back 1.41*** 0.14 10.25 .000 
vmPFC Activity during 2-back 1.25*** 0.12 10.61 .000 
Pain Intensity 3.10+    
 Residual Covariances 
dMFC Activity during 2-back 
w/vmPFC Activity during 2-back 

0.12 0.10 1.19 .234 
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aMCC Activity during 2-back 
w/vmPFC Activity during 2-back 

0.31** 0.09 3.40 .001 

aMCC Activity during 2-back 
w/dMFC Activity during 2-back 

0.55*** 0.09 5.91 .000 

 Latent Variances 
Self-Reported Affective Distress 41.19*** 7.41 5.56 .000 
 Indirect Paths 
Pain -> aMCC -> 2-back 0.01 0.04 0.30 .763 
Pain -> dMFC -> 2-back 0.04 0.04 0.98 .326 
Pain -> vmPFC -> 2-back -0.22* 0.10 -2.27 .023 
Pain -> Affective Distress -> 2-back -0.11 0.11 -1.03 .303 
Pain -> Affective Distress -> aMCC 
-> 2-back 

-0.00 0.01 -0.28 .779 

Pain -> Affective Distress -> dMFC 
-> 2-back 

-0.02 0.02 -1.20 .229 

Pain -> Affective Distress -> 
vmPFC -> 2-back 

0.01 0.02 0.46 .645 

Total Effect -1.43 0.41 -3.47 .001 
 Fit Indices 
χ

2 12.95    
CFI 1.00    
TLI 1.01    
RMSEA 0.00    
Scaled χ2 11.30(17)    
Note. Dependent variables are underlined with their respective predictors shown below, 
with the exception of the underlined Affective Distress latent variable where indicators 
are shown below. +Fixed parameter; * p < .05, ** p < .01, ** p < .001 
 460 

4. Discussion 461 

In the present study, we (1) tested whether the negative relationship between non-462 

experimental pain and working memory (WM) demonstrated in previous research extends to 463 

otherwise healthy individuals, and (2) examined whether self-reported affective distress or 464 

neurobiological factors related to pain, affective distress, and WM might account for this 465 

relationship. We found that pain intensity was negatively associated with accuracy on the 2-back 466 

task. We also found an indirect association between pain and 2-back task performance via neural 467 
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factors related to affective distress, specifically, increased self-reported pain intensity was related 468 

to worse 2-back task performance through increased activation in the ventromedial prefrontal 469 

cortex (vmPFC).  470 

 The direct negative association between everyday pain intensity and 2-back task accuracy 471 

that we observed is consistent with a previous online study which found pain-related increases in 472 

false alarms on a letter 2-back task (Attridge et al., 2015). Similarly, we found that as 473 

participants’ pain intensity levels increased, their overall accuracy on the 2-back task decreased. 474 

Although the stimulus category types (places, tools, faces, body parts) used in the present study’s 475 

2-back task differed from the letter 2-back used by Attridge et al. (2015), the similarity of our 476 

findings to this prior study increases confidence in the replicability of the direct association.  477 

While negative correlation between pain intensity and 2-back task accuracy that we 478 

report is weak (r = -.28, pcorrected < .001), it is comparable to the relationship between pain 479 

intensity measured outside the laboratory and WM task performance (number of correct 480 

rejections in 2-back task) reported by Attridge et al. (2015) (r = -0.16, p < .001). Other studies 481 

using similar tasks have found comparable significant (although weak) negative correlations, for 482 

example, Kuhajda et al. (2002) reported a negative correlation between headache pain intensity 483 

ratings and memory task performance, r = −0.25, p = .024. More broadly, our finding suggests, 484 

consistent with prior studies, that even relatively low levels of pain reported over the past 7 days, 485 

as observed in our healthy sample, may directly impact WM task performance. 486 

The results of the current study suggest that the association between pain and WM 487 

performance may be partly explained by increased activation (i.e., attenuated deactivation) in the 488 

vmPFC. Laboratory-based studies of healthy individuals receiving experimentally induced pain 489 

have typically reported that increased vmPFC activity is associated with decreased pain (Atlas et 490 
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al., 2014). In contrast, studies with chronic pain patients have found that increased vmPFC 491 

activity is associated with increased pain (Apkarian et al., 2011). In the present study, we found 492 

that participants who reported non-zero pain in the past 7 days had significantly greater 2-back 493 

task-related vmPFC activity than participants reporting zero pain. Thus, it is possible that the 494 

participants reporting non-zero pain in our sample may, in certain aspects, more resemble 495 

patients with chronic pain than typically healthy participants. Further study is needed to compare 496 

WM-related vmPFC dysfunction in healthy individuals experiencing everyday pain outside of 497 

the laboratory with that experienced by patients with chronic pain.  498 

Finally, although we found that participants who reported non-zero pain demonstrated 499 

significantly greater WM task-related vmPFC activity than participants who reported zero pain, 500 

we did not find that 2-back task performance itself significantly differed between the two groups. 501 

This suggests that differences between healthy individuals experiencing everyday pain and those 502 

not experiencing pain may be more sensitively characterized at the neural, rather than behavioral, 503 

level. Although there are consistently reported WM deficits in patients with chronic pain 504 

compared to healthy controls (Berryman et al., 2013), previous studies in healthy populations 505 

have shown mixed evidence that behavioral differences exist in pain vs. non-pain groups (e.g., 506 

behavioral differences were not consistently observed for all measures of an n-back task in 507 

Attridge et al., 2015). This may reflect the advantages of neuroimaging tools such as fMRI to 508 

provide additional information on the neurobiological impacts of pain. Relatedly, participants 509 

with non-zero pain may not have been experiencing sufficient pain intensity levels to impact 510 

WM performance compared to participants with zero pain, considering the mean pain intensity 511 

for the non-zero pain group was fairly low (M = 2.41). Importantly, however, we did observe a 512 

direct relationship between pain intensity and 2-back task accuracy in non-zero pain participants, 513 
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suggesting that participants experiencing increased pain intensity did demonstrate worse WM 514 

task performance. 515 

4.1. Limitations  516 

The results of our study should be interpreted in the context of certain limitations. First, 517 

while the use of HCP data allowed us to employ advanced statistical modeling to explore 518 

potential mediators in the relationship between pain and WM in a large and heterogeneous 519 

sample, the data collection procedures used in the HCP study and the lack of an experimentally 520 

induced pain stimulus necessitated that we draw observational rather than causal associations 521 

between our chosen variables. Second, because pain was not a primary focus of the HCP study, 522 

we lack data on the specific nature of the pain experienced by participants, or whether 523 

participants were in pain during the actual study procedures. However, it is notable that we 524 

report a direct and indirect association between pain and 2-back task accuracy despite the 525 

possibility that some participants may not have been experiencing pain during the 2-back task 526 

itself. Additionally, although participants were excluded if they reported using daily prescription 527 

medication for migraines in the past month, they were not explicitly excluded for the presence of 528 

chronic pain. As a result, it is possible that a small proportion of the participants in our sample 529 

may have been experiencing chronic pain. However, estimates for the prevalence of self-reported 530 

chronic pain in the United States range from 12.4-21.0% for participants aged 18-34 (Johannes et 531 

al., 2010), and is likely even lower in the HCP sample given that participants were excluded if 532 

taking daily prescription medication for migraines. Next, our measure of self-reported affective 533 

distress was a composite of several specific emotion items (i.e., fear, anger, stress, sadness). 534 

While each of these emotion items were highly correlated by virtue of being pain-related and 535 

negatively valenced, they are nevertheless theoretically discrete emotional states associated with 536 
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different levels of arousal and motivational tendencies. In the current study, affective distress, 537 

measured as a composite of negative pain-related emotions, was associated with pain reported 538 

over the past 7 days but was not associated with performance on the 2-back task. It is possible 539 

that the negative association between pain-related distress and WM performance is emotion-540 

specific (i.e., present for fear but not for anger). Finally, despite our a priori interest in the 541 

variables included in our structural equation models, our results do not preclude the influence of 542 

other self-report or neural factors related to pain or WM. 543 

4.2. Implications and future directions 544 

The results of our study provide evidence for a negative relationship between levels of 545 

pain experienced over the past 7 days and WM in a large sample of healthy individuals, and 546 

point to a potential neurobiological mechanism of this relationship. Future studies will be needed 547 

to formally test whether the associations that we report in the present study are causal in nature. 548 

Our results, combining behavioral self-report and neurobiological measures into a single model, 549 

also help clarify the complex and often overlapping relationships between pain, emotion, and 550 

cognition (Gilam et al., 2020). Future studies could aim to use more complex methodologies, 551 

such as multivariate pattern analysis and machine learning algorithms (e.g., Kragel et al., 2018), 552 

to characterize patterns of brain activity that may comprise neural representations of these 553 

constructs. An important implication of this study is that even pain experienced outside of the 554 

laboratory (i.e., in everyday life) in otherwise healthy individuals can directly impact WM task 555 

performance. In consideration of this, we recommend that future studies examining pain and 556 

WM using ostensibly healthy populations consider measuring baseline pain prior to the induction 557 

of experimental pain stimuli, as individual variability in baseline pain levels could impact 558 

associated brain activity and WM task performance.  559 
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4.3. Conclusions  560 

Together, our findings add to our understanding of the full impact of pain on cognitive 561 

functioning (Eccleston, 2013). In addition to demonstrating non-experimental pain-cognition 562 

associations in healthy individuals, our findings add to our understanding of the potential neural 563 

mechanisms that may contribute to this association. Our finding of a direct and indirect 564 

association between pain intensity and WM task performance in a large and publicly available 565 

dataset is consistent with prior literature that has separately identified pathways associated with 566 

the affective-motivational and self-regulatory aspects of pain among healthy volunteers and 567 

patients with chronic pain. Furthermore, our inclusion of multiple self-report measures of 568 

affective distress and task-related brain activity helps clarify the relative contributions of these 569 

factors on the relationship between pain and cognition. Our findings ideally will aid future 570 

efforts to understand the mechanisms underlying the relationship between pain experienced 571 

outside of the laboratory in healthy individuals and cognitive task performance. Our findings are 572 

clinically relevant in suggesting that even ostensibly healthy individuals who may not meet 573 

clinical criteria for pain disorders may nonetheless experience pain-related interference with 574 

other aspects of their cognition.  575 

 576 

 577 
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Highlights: 
 

• Most studies examine pain in chronic pain patients and laboratory settings 
• Few studies on pain in healthy individuals; affective distress may play a role 
• Increased pain intensity directly associated with worse working memory performance 
• Pain indirectly related to working memory via increased activity in vmPFC 
• vmPFC may underlie pain-related deficits in working memory in healthy individuals 
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